scispace - formally typeset
Search or ask a question

Showing papers by "Robert Clement published in 2022"


Journal ArticleDOI
TL;DR: Random Forest Robust (RFR) as mentioned in this paper can accommodate a wide range of data gap sizes, multiple flux types (i.e. CO2, water and energy fluxes).

17 citations


Peer ReviewDOI
01 May 2022
TL;DR: In this paper , the authors present a review of approaches to the scaling problem and synthesize the work in the recent UK Greenhouse Gas Emissions and Feedbacks Program, which was designed to identify and address these challenges.
Abstract: The role of greenhouse gases (GHGs) in global climate change is now well recognized and there is a clear need to measure emissions and verify the efficacy of mitigation measures. To this end, reliable estimates are needed of the GHG balance at the national scale and over long time periods, but these estimates are difficult to make accurately. Because measurement techniques are generally restricted to relatively small spatial and temporal scales, there is a fundamental problem in translating these into long‐term estimates on a regional scale. The key challenge lies in spatial and temporal upscaling of short‐term, point observations to estimate large‐scale annual totals, and quantify the uncertainty associated with this upscaling. Here, we review some approaches to this problem and synthesize the work in the recent UK Greenhouse Gas Emissions and Feedbacks Program, which was designed to identify and address these challenges. Approaches to the scaling problem included: instrumentation developments which mean that near‐continuous data sets can be produced with larger spatial coverage; geostatistical methods which address the problem of extrapolating to larger domains, using spatial information in the data; more rigorous statistical methods which characterize the uncertainty in extrapolating to longer time scales; analytical approaches to estimating model aggregation error; enhanced estimates of C flux measurement error; and novel uses of remote sensing data to calibrate process models for generating probabilistic regional C flux estimates.

3 citations


DOI
01 Aug 2022
TL;DR: In this article , the authors deployed eight lower-cost eddy covariance systems in two clusters around two conventional EDD covariance system in the Chihuahuan Desert of North America for a period of 2 years.
Abstract: The eddy covariance method is widely used to investigate fluxes of energy, water, and carbon dioxide at landscape scales, providing important information on how ecological systems function. Flux measurements quantify ecosystem responses to environmental perturbations and management strategies, including nature‐based climate‐change mitigation measures. However, due to the high cost of conventional instrumentation, most eddy covariance studies employ a single system, limiting spatial representation to the flux footprint. Insufficient replication may be limiting our understanding of ecosystem behavior. To address this limitation, we deployed eight lower‐cost eddy covariance systems in two clusters around two conventional eddy covariance systems in the Chihuahuan Desert of North America for a period of 2 years. These dryland settings characterized by large temperature variations and relatively low carbon dioxide fluxes represented a challenging setting for eddy covariance. We found very good closure of energy and water balance across all systems (within ±9% of unity). We found very good correspondence between the lower‐cost and conventional systems' fluxes of sensible heat (with concordance correlation coefficient (CCC) of ≥0.87), latent energy (evapotranspiration; CCC ≥ 0.89), and useful correspondence in the net ecosystem exchange ((NEE); with CCC ≥ 0.4) at the daily temporal resolution. Relative to the conventional systems, the low‐frequency systems were characterized by a higher level of random error, particularly in the NEE fluxes. Lower‐cost systems can enable wider deployment affording better replication and sampling of spatiotemporal variability at the expense of greater measurement noise that might be limiting for certain applications. Replicated eddy covariance observations may be useful when addressing gaps in the existing monitoring of critical and underrepresented ecosystems and for measuring areas larger than a single flux footprint.

2 citations