scispace - formally typeset
Search or ask a question

Showing papers by "Sajeet Haridas published in 2013"


Journal ArticleDOI
TL;DR: This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae’s tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by ter penes.
Abstract: Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions. A comparison with the genome and transcriptomes of the mountain pine beetle-associated pathogen Grosmannia clavigera highlights differences between a pathogen that colonizes and kills living pine trees and a saprophyte that colonizes wood and the inner bark of dead trees. We assembled a 33 Mbp genome in 45 scaffolds, and predicted approximately 8,884 genes. The genome size and gene content were similar to those of other ascomycetes. Despite having similar ecological niches, O. piceae and G. clavigera showed no large-scale synteny. We identified O. piceae genes involved in the biosynthesis of melanin, which causes wood discoloration and reduces the commercial value of wood products. We also identified genes and pathways involved in growth on simple carbon sources and in sapwood, O. piceae’s natural substrate. Like the pathogen, the saprophyte is able to tolerate terpenes, which are a major class of pine tree defense compounds; unlike the pathogen, it cannot utilize monoterpenes as a carbon source. This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae’s tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by terpenes. The data generated will provide the research community with resources for work on host-vector-fungus interactions for wood-inhabiting, beetle-associated saprophytes and pathogens.

69 citations


Journal ArticleDOI
TL;DR: Although the G. clavigera CYPome has contracted in evolution, certain CYP families have expanded by duplication, and CYPs in clusters that may be involved in conversion of host chemicals are identified.

39 citations


Patent
23 Jan 2013
TL;DR: In this paper, the ATP-binding cassette transporters (ABC transporter) are described and the present disclosure relates to ABC terpenoid transters, nucleic acid sequences, amino acids, proteins, vectors, cells, transgenic organisms, uses, compositions, methods, processes, and kits thereof.
Abstract: Provided herein are ATP-binding cassette transporters (ABC transporters). More specifically, the present disclosure relates to ABC terpenoid transporters, nucleic acid sequences, amino acids, proteins, vectors, cells, transgenic organisms, uses, compositions, methods, processes, and kits thereof.

4 citations