scispace - formally typeset
Search or ask a question

Showing papers by "Satoshi Ikemoto published in 2010"


Journal ArticleDOI
TL;DR: A neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach is outlined.

391 citations


Journal ArticleDOI
15 Jan 2010-PLOS ONE
TL;DR: The results suggest that amphetamine administration into the ventral striatum, particularly in the vicinity of the medial olfactory tubercle, activates dopaminergic mechanisms that strongly enhance behavioral interaction with unconditioned visual stimuli.
Abstract: Background Administration of psychomotor stimulants like amphetamine facilitates behavior in the presence of incentive distal stimuli, which have acquired the motivational properties of primary rewards through associative learning. This facilitation appears to be mediated by the mesolimbic dopamine system, which may also be involved in facilitating behavior in the presence of distal stimuli that have not been previously paired with primary rewards. However, it is unclear whether psychomotor stimulants facilitate behavioral interaction with unconditioned distal stimuli. Principal Findings We found that noncontingent administration of amphetamine into subregions of the rat ventral striatum, particularly in the vicinity of the medial olfactory tubercle, facilitates lever pressing followed by visual signals that had not been paired with primary rewards. Noncontingent administration of amphetamine failed to facilitate lever pressing when it was followed by either tones or delayed presentation or absence of visual signals, suggesting that visual signals are key for enhanced behavioral interaction. Systemic administration of amphetamine markedly increased locomotor activity, but did not necessarily increase lever pressing rewarded by visual signals, suggesting that lever pressing is not a byproduct of heightened locomotor activity. Lever pressing facilitated by amphetamine was reduced by co-administration of the dopamine receptor antagonists SCH 23390 (D1 selective) or sulpiride (D2 selective). Conclusions Our results suggest that amphetamine administration into the ventral striatum, particularly in the vicinity of the medial olfactory tubercle, activates dopaminergic mechanisms that strongly enhance behavioral interaction with unconditioned visual stimuli.

42 citations


Journal ArticleDOI
TL;DR: Picrotoxin administration into the SuM appears to disinhibit local neurons and recruits activation of brain structures associated with motivational processes, including the mesolimbic dopamine system, prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus.
Abstract: Picrotoxin blocks GABAA receptors, whose activation typically inhibits neuronal firing activity. We recently found that rats learn to selectively self-administer picrotoxin or bicuculline, another GABAA receptor antagonist, into the supramammillary nucleus (SuM), a posterior hypothalamic structure localized anterior to the ventral tegmental area. Other drugs such as nicotine or the excitatory amino acid AMPA are also self-administered into the SuM. The SuM appears to be functionally linked with the mesolimbic dopamine system and is closely connected with other brain structures that are implicated in motivational processes, including the prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. Here, we hypothesized that these brain structures are activated by picrotoxin injections into the SuM. Picrotoxin administration into the SuM markedly facilitated locomotion and rearing. Further, it increased c-Fos expression in this region, suggesting blockade of tonic inhibition and thus the disinhibition of local neurons. This manipulation also increased c-Fos expression in structures including the ventral tegmental area, medial shell of the nucleus accumbens, medial prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. Picrotoxin administration into the SuM appears to disinhibit local neurons and recruits activation of brain structures associated with motivational processes, including the mesolimbic dopamine system, prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. These regions may be involved in mediating positive motivational effects triggered by intra-SuM picrotoxin.

25 citations


Journal ArticleDOI
TL;DR: Baclofen injections into the midbrain raphe nuclei are rewarding, suggesting that MR or DR neurons containing GABAB receptors are involved in tonic inhibitory control over reward processes.
Abstract: Rationale The midbrain raphe regions have long been implicated in affective processes and disorders. There is increasing evidence to suggest that the median (MR) and dorsal raphe nuclei (DR) tonically inhibit reward-related processes.

23 citations