scispace - formally typeset
Search or ask a question

Showing papers by "Srikanta Bedathur published in 2023"


13 Jul 2023
TL;DR: In this article , a neural marked temporal point process (MTPP) framework is proposed to model the continuous-time distribution of actions in an activity sequence while simultaneously addressing three high-impact problems (i.e., next action prediction, sequence-goal prediction, and end-to-end sequence generation).
Abstract: Human beings always engage in a vast range of activities and tasks that demonstrate their ability to adapt to different scenarios. Any human activity can be represented as a temporal sequence of actions performed to achieve a certain goal. Unlike the time series datasets extracted from electronics or machines, these action sequences are highly disparate in their nature -- the time to finish a sequence of actions can vary between different persons. Therefore, understanding the dynamics of these sequences is essential for many downstream tasks such as activity length prediction, goal prediction, next action recommendation, etc. Existing neural network-based approaches that learn a continuous-time activity sequence (or CTAS) are limited to the presence of only visual data or are designed specifically for a particular task, i.e., limited to next action or goal prediction. In this paper, we present ProActive, a neural marked temporal point process (MTPP) framework for modeling the continuous-time distribution of actions in an activity sequence while simultaneously addressing three high-impact problems -- next action prediction, sequence-goal prediction, and end-to-end sequence generation. Specifically, we utilize a self-attention module with temporal normalizing flows to model the influence and the inter-arrival times between actions in a sequence. In addition, we propose a novel addition over the ProActive model that can handle variations in the order of actions, i.e., different methods of achieving a given goal. We demonstrate that this variant can learn the order in which the person or actor prefers to do their actions. Extensive experiments on sequences derived from three activity recognition datasets show the significant accuracy boost of ProActive over the state-of-the-art in terms of action and goal prediction, and the first-ever application of end-to-end action sequence generation.

13 Jul 2023
TL;DR: NeuroSeqRet as mentioned in this paper proposes a neural relevance model for end-to-end CTES retrieval, which applies a trainable unwarping function on the query sequence which makes it comparable with corpus sequences, especially when a relevant query-corpus pair has individually different attributes.
Abstract: Temporal sequences have become pervasive in various real-world applications. Consequently, the volume of data generated in the form of continuous time-event sequence(s) or CTES(s) has increased exponentially in the past few years. Thus, a significant fraction of the ongoing research on CTES datasets involves designing models to address downstream tasks such as next-event prediction, long-term forecasting, sequence classification etc. The recent developments in predictive modeling using marked temporal point processes (MTPP) have enabled an accurate characterization of several real-world applications involving the CTESs. However, due to the complex nature of these CTES datasets, the task of large-scale retrieval of temporal sequences has been overlooked by the past literature. In detail, by CTES retrieval we mean that for an input query sequence, a retrieval system must return a ranked list of relevant sequences from a large corpus. To tackle this, we propose NeuroSeqRet, a first-of-its-kind framework designed specifically for end-to-end CTES retrieval. Specifically, NeuroSeqRet introduces multiple enhancements over standard retrieval frameworks and first applies a trainable unwarping function on the query sequence which makes it comparable with corpus sequences, especially when a relevant query-corpus pair has individually different attributes. Next, it feeds the unwarped query sequence and the corpus sequence into MTPP-guided neural relevance models. We develop four variants of the relevance model for different kinds of applications based on the trade-off between accuracy and efficiency. We also propose an optimization framework to learn binary sequence embeddings from the relevance scores, suitable for the locality-sensitive hashing. Our experiments show the significant accuracy boost of NeuroSeqRet as well as the efficacy of our hashing mechanism.