scispace - formally typeset
Search or ask a question

Showing papers by "Stefan Hohmann published in 2002"


Journal ArticleDOI
TL;DR: An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Abstract: The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.

1,589 citations


Journal ArticleDOI
TL;DR: It is suggested that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage and supports a role for plasma membrane water transport activity in determination of freeze tolerance in yeast.
Abstract: Little information is available about the precise mechanisms and determinants of freeze resistance in baker's yeast, Saccharomyces cerevisiae. Genomewide gene expression analysis and Northern analysis of different freeze-resistant and freeze-sensitive strains have now revealed a correlation between freeze resistance and the aquaporin genes AQY1 and AQY2. Deletion of these genes in a laboratory strain rendered yeast cells more sensitive to freezing, while overexpression of the respective genes, as well as heterologous expression of the human aquaporin gene hAQP1, improved freeze tolerance. These findings support a role for plasma membrane water transport activity in determination of freeze tolerance in yeast. This appears to be the first clear physiological function identified for microbial aquaporins. We suggest that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage. Aquaporin overexpression also improved maintenance of the viability of industrial yeast strains, both in cell suspensions and in small doughs stored frozen or submitted to freeze-thaw cycles. Furthermore, an aquaporin overexpression transformant could be selected based on its improved freeze-thaw resistance without the need for a selectable marker gene. Since aquaporin overexpression does not seem to affect the growth and fermentation characteristics of yeast, these results open new perspectives for the successful development of freeze-resistant baker's yeast strains for use in frozen dough applications.

139 citations


Book ChapterDOI
TL;DR: Yeast is expected to be the best-explored cellular organism for several years ahead, and osmotic responses are a focus of interest for numerous yeast researchers.
Abstract: The yeast Saccharomyces cerevisiae (baker's yeast or budding yeast) is an excellent eukaryotic model system for cellular biology with a well-explored, completely sequenced genome. Yeast cells possess robust systems for osmotic adaptation. Central to the response to high osmolarity is the HOG pathway, one of the best-explored MAP kinase pathways. This pathway controls via different transcription factors the expression of more than 150 genes. In addition, osmotic responses are also controlled by protein kinase A via a general stress response pathway and by presently unknown signaling systems. The HOG pathway partially controls expression of genes encoding enzymes in glycerol production. Glycerol is the main yeast osmolyte, and its production is essential for growth in a high osmolarity medium. Upon hypo-osmotic shock, yeast cells transiently stimulate another MAP kinase pathway, the so-called PKC pathway, which appears to orchestrate the assembly of the cell surface and the cell wall. In addition, yeast cells show signs of a regulated volume decrease by rapidly exporting glycerol through Fps1p. This unusual MI P channel is gated by osmotic changes and thereby plays a key role in controlling the intracellular osmolyte content. Yeast cells also possess two aquaporins, Agy1 p and Agy2p. The production of both proteins is strictly regulated, suggesting that these water channels play very specific roles in yeast physiology. Agy1 p appears to be developmentally regulated. Given the strong yeast research community and the excellent tools of genetics and functional genomics available, we expect yeast to be the best-explored cellular organism for several years ahead, and osmotic responses are a focus of interest for numerous yeast researchers.

104 citations