scispace - formally typeset
Search or ask a question

Showing papers by "Stephen E. Darby published in 2010"


Journal ArticleDOI
TL;DR: In this article, a case study from a spawning habitat rehabilitation (SHR) project on California's Mokelumne River was used to test whether hypotheses about pool-riffle maintenance mechanisms used in designing SHR projects were producing self-sustaining spawning habitat when subjected to competent flows.
Abstract: The influence of geomorphic change on ecohydraulics has traditionally been difficult to quantify. With recent improvements in surveying technology, high-resolution, repeat and topographic surveys have become a common tool for estimating fluvial sediment budgets and documenting spatial patterns of net erosion and net deposition. Using a case study from a spawning habitat rehabilitation (SHR) project on California's Mokelumne River, some new DEM-differencing analytical tools and ecohydraulic models were used to test whether hypotheses about pool-riffle maintenance mechanisms used in designing SHR projects were producing self-sustaining spawning habitat when subjected to competent flows. Following peak flows associated with the spring snow-melt, a total of 999.6 m3 of erosion and 810.1 m3 of deposition were recorded throughout the study area, with a net loss of 196.2 m3. Using an ecohydraulic spawning habitat suitability model to segregate the sediment budget, over 53% of the area in which gravel was placed in a 2005 SHR retained the same habitat quality characteristics, and 22% improved. The response to the flood was generically characterized by shallow deposition associated with areas of divergent flow over riffles and scour associated with areas of convergent flow in pools. Areas where habitat remained stable generally experienced only low-magnitude elevation changes, and accounted for only 19.5% of the total volumetric change. Areas where habitat quality degraded (primarily pool exit slopes) were dominated by larger magnitude erosion and made up 46% of the total volumetric change. By contrast, areas where habitat quality improved (primarily constructed riffle) accounted for 34.5% the total volumetric change, and were dominated by shallow, low magnitude deposition. The results support hypotheses about pool-riffle maintenance mechanisms used to design the rehabilitation projects, while also highlighting some simple but powerful techniques for linking ecohydraulic and geomorphic field monitoring data at a salmon-relevant spatial scale.

119 citations


Journal ArticleDOI
TL;DR: In this article, a combination of analytical modeling and novel field measurement techniques is employed to improve the parameterization of an excess shear stress model as applied to the Lower Mekong River.
Abstract: Hydraulic erosion of bank toe materials is the dominant factor controlling the long-term rate of riverbank retreat. In principle, hydraulic bank erosion can be quantified using an excess shear stress model, but difficulties in estimating input parameters seriously inhibit the predictive accuracy of this approach. Herein a combination of analytical modeling and novel field measurement techniques is employed to improve the parameterization of an excess shear stress model as applied to the Lower Mekong River. Boundary shear stress is estimated using a model (Kean and Smith, 2006a, 2006b) for flow over the irregular bank topography that is characteristic of fine-grained riverbanks. Bank erodibility parameters were obtained using a cohesive strength meter (Tolhurst et al., 1999). The new model was used to estimate annual bank erosion rates via integration across the Mekong's annual flow regime. Importantly, the simulations represent the first predictions of hydraulic bank erosion that do not require recourse to calibration, thereby providing a stronger physical basis for the simulation of bank erosion. Model predictions, as evaluated by comparing simulated annual rates of bank toe retreat with estimates of bank retreat derived from analysis of aerial photographs and satellite imagery, indicate a tendency to overpredict erosion (root-mean-square error equals ±0.53 m/yr). Form roughness induced by bank topographic features is shown to be a major component (61%–85%) of the spatially averaged total shear stress, and as such it can be viewed as an important factor that self-limits bank erosion.

63 citations


Journal ArticleDOI
TL;DR: In this article, a new analytical method was proposed to estimate the failure plane angle and the depth of the tension crack in a riverbank with planar failure. But this method is not suitable for the case of steep, relatively low banks composed of cohesive sediments.

21 citations


Journal ArticleDOI
TL;DR: A selection of recent contributions to Earth Surface Processes and Landforms can be found in this article, which highlights a personal selection of 18 recent (2007-2009) contributions to earth surface processes and landforms.
Abstract: This thematic Virtual Special Issue highlights a personal selection of 18 recent (2007-2009) contributions to Earth Surface Processes and Landforms. These papers provide a flavour of recent research that is concerned with furthering our understanding of the many ways in which the biosphere interacts with the physical and chemical processes of sediment transfer/transformation. Much of this research has focused on understanding the mechanics by which the biota can modulate sediment transport and the strength of earth surface materials, often with the aim of applying that knowledge to enhance bioremediation methods of erosion control. This work continues to be fundamentally important in enhancing our understanding of earth surface processes, but often treats the biosphere and physical world as uncoupled entities. This selection therefore also provides samples of work that point to an ongoing but significant disciplinary reappraisal in which it is the interactions between ecological and geomorphological realms that are of primary interest.

16 citations