scispace - formally typeset
Search or ask a question

Showing papers by "Sudip Kundu published in 2015"


Journal ArticleDOI
TL;DR: The existing genome scale metabolic model of rice leaf is curated by incorporating new compartment, reactions and transporters to elucidate how the chlorophyll is synthesized in a leaf through a series of bio-chemical reactions spanned over different organelles using inorganic macronutrients and light energy.
Abstract: Chlorophyll is one of the most important pigments present in green plants and rice is one of the major food crops consumed worldwide. We curated the existing genome scale metabolic model (GSM) of rice leaf by incorporating new compartment, reactions and transporters. We used this modified GSM to elucidate how the chlorophyll is synthesized in a leaf through a series of bio-chemical reactions spanned over different organelles using inorganic macronutrients and light energy. We predicted the essential reactions and the associated genes of chlorophyll synthesis and validated against the existing experimental evidences. Further, ammonia is known to be the preferred source of nitrogen in rice paddy fields. The ammonia entering into the plant is assimilated in the root and leaf. The focus of the present work is centered on rice leaf metabolism. We studied the relative importance of ammonia transporters through the chloroplast and the cytosol and their interlink with other intracellular transporters. Ammonia assimilation in the leaves takes place by the enzyme glutamine synthetase (GS) which is present in the cytosol (GS1) and chloroplast (GS2). Our results provided possible explanation why GS2 mutants show normal growth under minimum photorespiration and appear chlorotic when exposed to air.

26 citations


Journal ArticleDOI
TL;DR: An unambiguous annotation of the experimentally verified miRNAs was made, predicted their targets and the possible biological functions they can affect to understand the network architecture of miRNA mediated regulations at the genomic and functional levels of rice.
Abstract: To understand the network architecture of miRNA mediated regulations at the genomic and functional levels of rice, we have made an unambiguous annotation of the experimentally verified miRNAs, predicted their targets and the possible biological functions they can affect. Some functions, namely translational and protein modifications and photosynthesis are targeted by higher percentage of miRNA. Using transformation procedures, we constructed a genome scale miRNA–miRNA functional synergistic network (MFSN). The analysis of MFSN modules help to identify miRNAs co-regulating target genes having several interrelated biological processes. Some of these target genes are also co-expressed under particular conditions. For example, the genes co-expressed under drought conditions as well as those targeted by miRNAs present in a MFSN module have interdependent biological processes namely, photosynthesis, cell-wall biogenesis, root development and xylan synthesis. The stress-induced miRNAs and their distributions, and the presence of transcription factors in the target set of MFSN modules were also analyzed.

16 citations


Journal ArticleDOI
TL;DR: This study provides a ‘proof of concept’ that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites.
Abstract: Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein–RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein–rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a ‘proof of concept’ that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites.

14 citations


Journal ArticleDOI
01 Sep 2015-PLOS ONE
TL;DR: A new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences is developed and could be an important approach in understanding the combinatorial gene regulation.
Abstract: Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable experimental data.

13 citations


Journal ArticleDOI
TL;DR: ‘relative co‐evolution order’ (rCEO) is introduced as length‐normalized average primary chain separation of co-evolving pairs (CEPs), which negatively correlates with ln kf, and is fitted into a 3D linear correlation.

10 citations


Journal ArticleDOI
TL;DR: The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure.
Abstract: Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions.

7 citations


Journal ArticleDOI
TL;DR: Analysis of the evolution of the UDP-glycosyltransferase 73B4 protein among monocot-dicot plants shows that CMs exhibit significantly higher tendency to occur within the range of electrostatic interaction around the slightly DMs, compared to occurring randomly in the protein.
Abstract: A compensatory mutation (CM) counter balances lethal effects of a deleterious mutation (DM), ensuring the persistence of both through natural selection. However, little is known about the biological aspects of CMs those restore the structural alterations of proteins caused by slightly DMs. Here, by analyzing the evolution of the UDP-glycosyltransferase 73B4 protein among monocot-dicot plants, we investigate the occurrence of CMs around slightly DMs in 3D space. Our results illustrate that CMs exhibit significantly higher tendency to occur within the range of electrostatic interaction around the slightly DMs, compared to occurring randomly in the protein.

7 citations


Journal ArticleDOI
TL;DR: Results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs’ transport capacities, and the predicted biosynthesis pathways vary slightly at the two different optimization conditions.
Abstract: Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs' transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs' transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio.

6 citations


Journal ArticleDOI
29 Jul 2015-PLOS ONE
TL;DR: The metabolic plasticity of genome-scale metabolic model of rice leaf is studied using the flux balance analysis (FBA) method with the help of in-silico reaction deletion strategy to help rice biotechnologists to design efficient rice cultivars.
Abstract: More than 20% of the total caloric intake of human population comes from rice. The expression of rice genes and hence, the concentration of enzymatic proteins might vary due to several biotic and abiotic stresses. It in turn, can influence the overall metabolism and survivability of rice plant. Thus, understanding the rice cellular metabolism, its plasticity and potential readjustments under different perturbations can help rice biotechnologists to design efficient rice cultivars. Here, using the flux balance analysis (FBA) method, with the help of in-silico reaction deletion strategy, we study the metabolic plasticity of genome-scale metabolic model of rice leaf. A set of 131 reactions, essential for the production of primary biomass precursors is identified; deletion of any of them can inhibit the overall biomass production. Usability Index (IU) for the rest of the reactions are estimated and based on this parameter, they are classified into three categories—maximally-favourable, quasi-favourable and unfavourable for the primary biomass production. The lower value of 1 − IU of a reaction suggests that the cell cannot easily bypass it for biomass production. While some of the alternative paths are energetically equally efficient, others demand for higher photon. The variations in (i) ATP/NADPH ratio, (ii) exchange of metabolites through chloroplastic transporters and (iii) total biomass production are also presented here. Mutual metabolic dependencies of different cellular compartments are also demonstrated.

2 citations