scispace - formally typeset
Search or ask a question

Showing papers by "Talma Katan published in 2001"


Journal ArticleDOI
TL;DR: Virulence characteristics varied with inoculation method and cotton cultivar, but highly virulent isolates from Israel were as virulent as D isolate from Spain under conditions conducive to severe disease.
Abstract: Genetic diversity and phenotypic diversity in Verticillium dahliae populations on cotton were studied among 62 isolates from Spain and 49 isolates from Israel, using vegetative compatibility grouping (VCG), virulence and molecular assays. In Spain, defoliating V. dahliae isolates (D pathotype) belong to VCG1, and non-defoliating isolates (ND) belong to VCG2A (often associated with tomato) and VCG4B (often associated with potato). The D pathotype was not identified in Israel. The ND pathotype in Israel is comprised of VCG2B and VCG4B. Isolates in VCG2B and VCG4B ranged in virulence from weakly virulent to highly virulent. The highly virulent isolates induced either partial defoliation or no defoliation. Virulence characteristics varied with inoculation method and cotton cultivar. Highly virulent isolates from Israel were as virulent as D isolates from Spain under conditions conducive to severe disease. The D pathotype is pathologically and genetically homogeneous, whereas the ND pathotype is heterogeneous with respect to virulence, VCG, and molecular markers based on single-primer RAPD and on PCR primer pairs.

72 citations


Journal ArticleDOI
TL;DR: It is speculated that heterokaryosis is unlikely to play a major role in generating the VCG diversity found among Forl or other strains of F. oxysporum, and prototrophic growth is proposed to be maintained through restoration of the heterokARYotic state by continual anastomosis between adjacent homokaryotic hyphae.
Abstract: Fusarium crown and root rot, caused by Fusarium oxysporum f.sp. radicis-lycopersici (Forl), is one of the most destructive soilborne diseases of tomato in Italy. Chlorate-resistant, nitrate-nonutilizing (nit) mutants were used to determine vegetative compatibility among 191 isolates of Forl collected in five geographic regions (Calabria, Emilia-Romagna, Liguria, Sardinia, Sicily) in Italy. The isolates were assigned to five vegetative compatibility groups (VCGs): 65 isolates to VCG 0090; 99 to VCG 0091; 23 to VCG 0092; two to VCG 0093; and two to VCG 0096. The population structure of Forl in Italy is similar to that reported for Israel, and differs from that found in North Atlantic European countries, where VCG 0094 is predominant. The stability of prototrophic heterokaryons originating from hyphal anastomosis between compatible complementary nit mutants was assessed through conidial analysis and mycelial mass transfer. Most monoconidial cultures (84%) recovered from 117 prototrophic heterokaryons were nit mutants, indicating that heterokaryons generally do not proliferate well through conidiation; most of the 177 prototrophic heterokaryons examined were unstable, and only 9% sustained prototrophic growth through the tenth mycelial transfer upon subculturing. The prototrophic growth is proposed to be maintained through restoration of the heterokaryotic state by continual anastomosis between adjacent homokaryotic hyphae. Since heterokaryosis is a prerequisite for parasexual recombination, we speculate that this mechanism is unlikely to play a major role in generating the VCG diversity found among Forl or other strains of F. oxysporum.

25 citations