scispace - formally typeset
Search or ask a question

Showing papers by "Timothy H. Murphy published in 1993"


Journal ArticleDOI
TL;DR: It is demonstrated that p42 MAP kinase is activated by glutamate receptor agonist stimulation and by endogenous synaptic activity, both of which are blocked by tetrodotoxin.
Abstract: Recent studies have identified at least two homologous mitogen-activated protein (MAP) kinases that are activated by phosphorylation of both tyrosine and threonine residues by an activator kinase. To help define the role of these MAP kinases in neuronal signalling, we have used primary cultures derived from fetal rat cortex to assess the regulation of their activity by agonist stimulation of glutamate receptors and by synaptic activity. Regulation was assayed by monitoring changes in both tyrosine phosphorylation on western blots and in vitro kinase activity toward a selective MAP kinase substrate peptide. In initial studies, we found that phorbol ester treatment increased tyrosine phosphorylation of p42 MAP kinase and stimulated MAP kinase activity. A similar response was elicited by three agonists of metabotropic glutamate receptors, i.e., trans-(+/-)-1-amino-1,3-cyclopentane dicarboxylic acid, quisqualate, and (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine. MAP kinase activity and p42 MAP kinase tyrosine phosphorylation were also stimulated by the ionotropic glutamate receptor agonist, kainate, but not by N-methyl-D-aspartate. To examine regulation of MAP kinase by synaptic activity, cultures were treated with picrotoxin, an inhibitor of GABAA receptor-mediated inhibition that enhances spontaneous excitatory synaptic activity. Treatment of cultures with picrotoxin elicited activation of MAP kinase. This response was blocked by tetrodotoxin, which suppresses synaptic activity. These results demonstrate that p42 MAP kinase is activated by glutamate receptor agonist stimulation and by endogenous synaptic activity.

149 citations


Journal ArticleDOI
TL;DR: Findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.
Abstract: The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.

122 citations