scispace - formally typeset
Search or ask a question

Showing papers by "Timothy S. Wallis published in 2005"


Journal ArticleDOI
TL;DR: Signature-tagged mutagenesis was used to identify 59 genes of EHEC O26:H− that are required for the intestinal colonization of calves and results indicate important roles for locus of enterocyte effacement (LEE)-encoded type III secreted proteins in intestinal colonization.
Abstract: Enterohemorrhagic Escherichia coli (EHEC) infections in humans are an important public health problem and are commonly acquired via contact with ruminant feces. The serogroups that are predominantly associated with human infection in the United States and Europe are O157 and O26. Serotypes O157:H7 and O26:H− differ in their virulence and tissue tropism in calves and therefore may colonize calves by distinct mechanisms. The mechanisms underlying EHEC intestinal colonization and pathogenesis are poorly understood. Signature-tagged mutagenesis was used to identify 59 genes of EHEC O26:H− that are required for the intestinal colonization of calves. Our results indicate important roles for locus of enterocyte effacement (LEE)-encoded type III secreted proteins in intestinal colonization. In addition, colonization is facilitated by cytotoxins, putative type III secreted proteins unlinked to the LEE, a putative fimbrial operon, and numerous genes involved in central metabolism and transport and genes of unknown function. Our data also imply that the elaboration of type I fimbriae by EHEC O26:H− is disadvantageous for persistence within the bovine intestines. These observations have important implications for the design of vaccines to control these important zoonotic pathogens.

118 citations


Journal ArticleDOI
25 Jul 2005
TL;DR: The biology of Salmonella serovar host specificity is discussed in the context of current understanding of the molecular basis of pathogenesis and the potential impact of different virulence determinants on Salmonellosis natural history.
Abstract: This review reviews the pathogenesis of different phases of Salmonella infections. The nature of Salmonella infections in several domesticated animal species is described to highlight differences in the epidemiology and pathogenesis of salmonellosis in different hosts. The biology of Salmonella serovar host specificity is discussed in the context of our current understanding of the molecular basis of pathogenesis and the potential impact of different virulence determinants on Salmonella natural history. The ability to colonize the intestine, as evidenced by the shedding of relatively large numbers of bacteria in the feces over a long period, is shared unequally by Salmonella serovars. Studies probing the molecular basis of Salmonella intestinal colonization have been carried out by screening random transposon mutant banks of serovar Typhimurium in a range of avian and mammalian species. It is becoming increasingly clear that Salmonella pathogenicity island 2 (SPI2) is a major virulence factor during infection of food-producing animals, including cattle and poultry. The prevalence of Salmonella serovars in domestic fowl varies in different countries and with time. Although chickens are the natural hosts of serovars Gallinarum and Pullorum, natural outbreaks caused by these serovars in turkeys, guinea fowl, and other avian species have been described. There are two possible explanations to account for the apparent host specificity of certain Salmonella serovars. Environmental factors may increase exposure of particular animal species to certain serovars. Alternatively, there are genetic differences between these serovars, which allow them to survive and/or grow in specific niches only found within ruminants or pigs.

26 citations


Journal ArticleDOI
26 Aug 2005
TL;DR: This work reviews knowledge of the adhesins produced by EHEC and other Stx-producing E. coli, with emphasis on genetic, structural, and mechanistic aspects and their contribution to pathogenesis.
Abstract: Enterohemorrhagic Escherichia coli (EHEC) was first recognized as a cause of human disease in 1983 and is associated with diarrhea and hemorrhagic colitis, which may be complicated by life-threatening renal and neurological sequelae. EHEC are defined by their ability to produce one or more Shiga-like toxins (Stx), which mediate the systemic complications of EHEC infections, and to induce characteristic attaching and effacing lesions on intestinal epithelia, a phenotype that depends on the locus of enterocyte effacement. Acquisition of Stx-encoding bacteriophages by enteropathogenic E. coli is believed to have contributed to the evolution of EHEC, and consequently some virulence factors are conserved in both pathotypes. A key requirement for E. coli to colonize the intestines and produce disease is the ability to adhere to epithelial cells lining the gastrointestinal tract. Here, we review knowledge of the adhesins produced by EHEC and other Stx-producing E. coli, with emphasis on genetic, structural, and mechanistic aspects and their contribution to pathogenesis.

8 citations