scispace - formally typeset
Search or ask a question

Showing papers by "Troy T. Rohn published in 2003"


Journal ArticleDOI
TL;DR: The ability of peroxynitrite to inhibit actin dynamics has a significant effect on actin‐dependent, cellular processes in phagocytic cells and may modulate their host defense function.
Abstract: Peroxynitrite, a potent oxidant generated in inflammatory tissues, can nitrate tyrosine residues on a variety of proteins. Based on previous studies suggesting that actin might be a potential target for peroxynitrite-mediated nitration in neutrophils, we investigated the effects of peroxynitrite on actin function. We show here that peroxynitrite and the peroxynitrite generator (SIN-1) modified actin in a concentration-dependent manner, resulting in an inhibition of globular-actin polymerization and filamentous-actin depolymerization in vitro. The effects of peroxynitrite were inhibited by the pyrrolopyrimidine antioxidant PNU-101033E, which has been shown previously to specifically block peroxynitrite-mediated tyrosine nitration. Furthermore, spectrophotometric and immunoblot analysis of peroxynitrite-treated actin demonstrated a concentration-dependent increase in nitrotyrosine, which was also blocked by PNU-101033E. Activation of neutrophils in the presence of a nitric oxide donor (S-nitroso-N-acetylpenicillamine) resulted in nitration of exogenously added actin. Nitrated actin was also found in peroxynitrite-treated neutrophils, suggesting that actin may be an important intracellular target during inflammation. To investigate this issue, we analyzed the effect of peroxynitrite treatment on a number of actin-dependent neutrophil processes. Indeed, neutrophil actin polymerization, migration, phagocytosis, and respiratory burst activity were all inhibited by SIN-1 treatment in a concentration-dependent manner. Therefore, the ability of peroxynitrite to inhibit actin dynamics has a significant effect on actin-dependent, cellular processes in phagocytic cells and may modulate their host defense function.

58 citations


Journal ArticleDOI
TL;DR: It is suggested that the truncated Tau protein activates proximal caspase-8 through FADD as a necessary step leading to neuronal cell death and neurite regression, contributing to the progression of abnormal Tau-associated neurodegeneracy.

15 citations