scispace - formally typeset
Search or ask a question
Author

Tsuneo Yoshikawa

Bio: Tsuneo Yoshikawa is an academic researcher from Ritsumeikan University. The author has contributed to research in topics: Haptic technology & Robot control. The author has an hindex of 46, co-authored 285 publications receiving 13245 citations. Previous affiliations of Tsuneo Yoshikawa include Tokyo University of Agriculture and Technology & Kyoto University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a measure of manipulability of robotic mechanisms in positioning and orienting end-effectors has been proposed and the best postures of various types of manipulators are given, and a four degree-of-freedom finger is considered from the viewpoint of the measure.
Abstract: This paper discusses the manipulating ability of robotic mechanisms in positioning and orienting end-effectors and proposes a measure of manipulability. Some properties of this measure are obtained, the best postures of various types of manipulators are given, and a four-degree-of-freedom finger is considered from the viewpoint of the measure. The pos tures somewhat resemble those of human arms and fingers.

2,321 citations

Journal ArticleDOI
12 May 1992
TL;DR: New control schemes of master-slave manipulators are proposed that provide the ideal kinesthetic coupling such that the operator can maneuver the system as though he/she were directly manipulating the remote object himself/herself.
Abstract: In this paper, the analysis and design of master-slave teleoperation systems are discussed. The goal of this paper is to build a superior master-slave system that can provide good maneuverability. We first analyze a one degree-of-freedom system including operator and object dynamics. Second, some ideal responses of master-slave systems are defined and a quantitative index of maneuverability is given, based on the concept of ideal responses. Third, we propose new control schemes of master-slave manipulators that provide the ideal kinesthetic coupling such that the operator can maneuver the system as though he/she were directly manipulating the remote object himself/herself. The proposed control scheme requires accurate dynamic models of the master and slave arms, but neither parameters of the remote object nor the operator dynamics is necessary. Finally, the proposed control scheme is introduced to a prototype master-slave system and the experimental results show the validity of the proposed scheme. >

953 citations

Journal ArticleDOI
TL;DR: The concept of task priority in relation to the inverse kinematic problem of redundant robot manipulators is introduced and the effectiveness of the proposed redundancy control scheme is shown.
Abstract: In this paper, we describe a new scheme for redundancy control of robot manipulators. We introduce the concept of task priority in relation to the inverse kinematic problem of redundant robot manipulators. A required task is divided into subtasks according to the order of priority. We propose to determine the joint motions of robot manipulators so that subtasks with lower priority can be performed utilizing re dundancy on subtasks with higher priority. This procedure is formulated using the pseudoinverses of Jacobian matrices. Most problems of redundancy utilization can be formulated in the framework of tasks with the order of priority. The results of numerical simulations and experiments show the effectiveness of the proposed redundancy control scheme.

933 citations

Proceedings Article
01 Jan 1983

659 citations

Book
01 Jan 1990

574 citations


Cited by
More filters
Book
22 Mar 1994
TL;DR: In this paper, the authors present a detailed overview of the history of multifingered hands and dextrous manipulation, and present a mathematical model for steerable and non-driveable hands.
Abstract: INTRODUCTION: Brief History. Multifingered Hands and Dextrous Manipulation. Outline of the Book. Bibliography. RIGID BODY MOTION: Rigid Body Transformations. Rotational Motion in R3. Rigid Motion in R3. Velocity of a Rigid Body. Wrenches and Reciprocal Screws. MANIPULATOR KINEMATICS: Introduction. Forward Kinematics. Inverse Kinematics. The Manipulator Jacobian. Redundant and Parallel Manipulators. ROBOT DYNAMICS AND CONTROL: Introduction. Lagrange's Equations. Dynamics of Open-Chain Manipulators. Lyapunov Stability Theory. Position Control and Trajectory Tracking. Control of Constrained Manipulators. MULTIFINGERED HAND KINEMATICS: Introduction to Grasping. Grasp Statics. Force-Closure. Grasp Planning. Grasp Constraints. Rolling Contact Kinematics. HAND DYNAMICS AND CONTROL: Lagrange's Equations with Constraints. Robot Hand Dynamics. Redundant and Nonmanipulable Robot Systems. Kinematics and Statics of Tendon Actuation. Control of Robot Hands. NONHOLONOMIC BEHAVIOR IN ROBOTIC SYSTEMS: Introduction. Controllability and Frobenius' Theorem. Examples of Nonholonomic Systems. Structure of Nonholonomic Systems. NONHOLONOMIC MOTION PLANNING: Introduction. Steering Model Control Systems Using Sinusoids. General Methods for Steering. Dynamic Finger Repositioning. FUTURE PROSPECTS: Robots in Hazardous Environments. Medical Applications for Multifingered Hands. Robots on a Small Scale: Microrobotics. APPENDICES: Lie Groups and Robot Kinematics. A Mathematica Package for Screw Calculus. Bibliography. Index Each chapter also includes a Summary, Bibliography, and Exercises

6,592 citations

Journal ArticleDOI
TL;DR: This work refers one to the original survey for descriptions of potential applications, summaries of AR system characteristics, and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.
Abstract: In 1997, Azuma published a survey on augmented reality (AR). Our goal is to complement, rather than replace, the original survey by presenting representative examples of the new advances. We refer one to the original survey for descriptions of potential applications (such as medical visualization, maintenance and repair of complex equipment, annotation, and path planning); summaries of AR system characteristics (such as the advantages and disadvantages of optical and video approaches to blending virtual and real, problems in display focus and contrast, and system portability); and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.

3,624 citations

Book
01 Jan 2006
TL;DR: In this paper, the Jacobian is used to describe the relationship between rigid motions and homogeneous transformations, and a linear algebraic approach is proposed for vision-based control of dynamical systems.
Abstract: Preface. 1. Introduction. 2. Rigid Motions and Homogeneous Transformations. 3. Forward and Inverse Kinematics. 4. Velocity Kinematics-The Jacobian. 5. Path and Trajectory Planning. 6. Independent Joint Control. 7. Dynamics. 8. Multivariable Control. 9. Force Control. 10. Geometric Nonlinear Control. 11. Computer Vision. 12. Vision-Based Control. Appendix A: Trigonometry. Appendix B: Linear Algebra. Appendix C: Dynamical Systems. Appendix D: Lyapunov Stability. Index.

3,100 citations

Journal ArticleDOI
01 Feb 1987
TL;DR: A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed, and the unified approach for motion and force control is developed.
Abstract: A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed. First, issues related to the description of end-effector tasks that involve constrained motion and active force control are discussed. The fundamentals of the operational space formulation are then presented, and the unified approach for motion and force control is developed. The extension of this formulation to redundant manipulator systems is also presented, constructing the end-effector equations of motion and describing their behavior with respect to joint forces. These results are used in the development of a new and systematic approach for dealing with the problems arising at kinematic singularities. At a singular configuration, the manipulator is treated as a mechanism that is redundant with respect to the motion of the end-effector in the subspace of operational space orthogonal to the singular direction.

2,849 citations

Journal ArticleDOI
TL;DR: In this article, a measure of manipulability of robotic mechanisms in positioning and orienting end-effectors has been proposed and the best postures of various types of manipulators are given, and a four degree-of-freedom finger is considered from the viewpoint of the measure.
Abstract: This paper discusses the manipulating ability of robotic mechanisms in positioning and orienting end-effectors and proposes a measure of manipulability. Some properties of this measure are obtained, the best postures of various types of manipulators are given, and a four-degree-of-freedom finger is considered from the viewpoint of the measure. The pos tures somewhat resemble those of human arms and fingers.

2,321 citations