scispace - formally typeset
Search or ask a question

Showing papers by "Vicente Galiano published in 2016"


Journal ArticleDOI
TL;DR: The present in silico study aimed at finding new inhibitors of the NS5 RNA-dependent RNA polymerase of the four serotypes of DENV by using a chemical library comprising 372,792 nonnucleotide compounds to perform molecular docking experiments against a binding site of the RNA template tunnel of the virus polymerase.
Abstract: The dengue virus (DENV) nonstructural protein 5 (NS5) contains both an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain. Polymerase activity is responsible for viral RNA synthesis by a de novo initiation mechanism and represents an attractive target for antiviral therapy. The incidence of DENV has grown rapidly and it is now estimated that half of the human population is at risk of becoming infected with this virus. Despite this, there are no effective drugs to treat DENV infections. The present in silico study aimed at finding new inhibitors of the NS5 RNA-dependent RNA polymerase of the four serotypes of DENV. We used a chemical library comprising 372,792 nonnucleotide compounds (around 325,319 natural compounds) to perform molecular docking experiments against a binding site of the RNA template tunnel of the virus polymerase. Compounds with high negative free energy variation (ΔG <-10.5 kcal/mol) were selected as putative inhibitors. Additional filters for favorable druggability and good absorption, distribution, metabolism, excretion, and toxicity were applied. Finally, after the screening process was completed, we identified 39 compounds as lead DENV polymerase inhibitor candidates. Potentially, these compounds could act as efficient DENV polymerase inhibitors in vitro and in vivo.

35 citations


Journal ArticleDOI
TL;DR: This data would suggest that the active molecule of arbidol in the membrane is the protonated one, i.e., the positively charged molecule, defined by the perturbation it exerts on membrane structure and therefore membrane functioning.
Abstract: Arbidol is a potent broad-spectrum antiviral molecule for the treatment and prophylaxis of many viral infections. Viruses that can be inhibited by arbidol include enveloped and non-enveloped viruses, RNA and DNA viruses, as well as pH-independent and pH-dependent ones. These differences in viral types highlight the broad spectrum of Arb antiviral activity and, therefore, it must affect a common viral critical step. Arbidol incorporates rapidly into biological membranes, and some of its antiviral effects might be related to its capacity to interact with and locate into the membrane. However, no information is available of the molecular basis of its antiviral mechanism/s. We have aimed to locate the protonated (Arp) and unprotonated (Arb) forms of arbidol in a model membrane system. Both Arb and Arp locate in between the hydrocarbon acyl chains of the phospholipids but its specific location and molecular interactions differ from each other. Whereas both Arb and Arp average location in the membrane palisade is a similar one, Arb tends to be perpendicular to the membrane surface, whereas Arp tends to be parallel to it. Furthermore, Arp, in contrast to Arb, seems to interact stronger with POPG than with POPC, implying the existence of a specific interaction between Arp, the protonated from, with negatively charged phospholipids. This data would suggest that the active molecule of arbidol in the membrane is the protonated one, i.e., the positively charged molecule. The broad antiviral activity of arbidol would be defined by the perturbation it exerts on membrane structure and therefore membrane functioning.

7 citations


Book ChapterDOI
14 Dec 2016
TL;DR: A comparative analysis of two parallelization proposals based on tiles, employing shared memory architectures and the other one based on Groups Of Pictures, employing distributed shared memory architecture shows that good speed-ups are obtained for the tile-based proposal, but the scalability decreases for low resolution video sequences.
Abstract: After the emergence of the new High Efficiency Video Coding standard, several strategies have been followed in order to take advantage of the parallel features available in it. Many of the parallelization approaches in the literature have been performed in the decoder side, aiming at achieving real-time decoding. However, the most complex part of the HEVC codec is the encoding side. In this paper, we perform a comparative analysis of two parallelization proposals. One of them is based on tiles, employing shared memory architectures and the other one is based on Groups Of Pictures, employing distributed shared memory architectures. The results show that good speed-ups are obtained for the tile-based proposal, especially for high resolution video sequences, but the scalability decreases for low resolution video sequences. The GOP-based proposal outperforms the tile-based proposal when the number of processes increases. This benefit grows up when low resolution video sequences are compressed.

2 citations