scispace - formally typeset
Search or ask a question

Showing papers by "Wenda Gao published in 2020"


Journal ArticleDOI
TL;DR: MSC deficiency may enhance the inflammatory reactions in the gut via excessive secretion of IL-22, leading to aggravated colonic epithelial injury under IBD.
Abstract: Intestinal inflammatory reactions and resulting tissue injuries are two major aspects of inflammatory bowel disease (IBD). The regulatory factors involved in the pathogenesis of IBD remain unclear. Recent studies showed that musculin (MSC) as a transcription suppressor participates in the regulation of certain immune functions. The purpose of this study was to determine the impact of MSC deficiency on colonic injury and inflammatory reaction under IBD, where wild-type (WT, +/+) and MSC-knockout (MSCKO, MSC-/-) mice were induced for disease by dextran sulfate sodium (DSS) in drinking water. Immunohistochemistry hematoxylin-eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) were used to analyze the matching samples from groups of different genotypes. The colonic epithelial injury in the MSC-/- IBD group was much severer than that in the +/+ IBD group, concurrent with higher IL-22 levels from the supernatant of ex vivo cultured colon tissues in the MSC-/- IBD group than those in the +/+ IBD group. The mRNA levels of IL-22 in mesenteric lymph nodes (MLN) also manifested similar tendency. MSC deficiency may enhance the inflammatory reactions in the gut via excessive secretion of IL-22, leading to aggravated colonic epithelial injury under IBD.

3 citations


Journal ArticleDOI
18 Feb 2020
TL;DR: For the first time, the engineering of an IgA mimicry of IgG is reported, with its Fc portion in fusion with the 18-aa tail piece of sIgA and the J chain, possessing sIGA’s full binding activity towards polymeric immunoglobulin receptor that mediates mucosa transcytosis.
Abstract: Most pathogens establish infection through mucosa, where secretary IgA (sIgA) plays an "immune exclusion" role in humoral defense. Extravasation of intravenously administrated therapeutic IgG mainly relies on convection and/or FcRn-mediated transcytosis from circulation into interstitial space. Active transport of interstitial IgG further across epithelium into mucosa, like sIgA, is a much desired feature for the next generation of therapeutic antibodies, especially for anti-infection purposes. For the first time, we report the engineering of an IgA mimicry of IgG, with its Fc portion in fusion with the 18-aa tail piece (tp) of sIgA and the J chain, possessing sIgA's full binding activity towards Polymeric Immunoglobulin Receptor (pIgR) that mediates mucosa transcytosis. In a Diphtheria toxin receptor (DTR) knockin mouse model, i.v. injected anti-DT IgG(tp)J protected DTR+ cells from deletion upon DT injection. The compact design of IgG(tp)J opens new revenues for more effective therapeutic IgG mimicking some of the important biological functions of IgA.

2 citations