scispace - formally typeset
Search or ask a question
Institution

ARC Centre of Excellence in Plant Energy Biology

Facility
About: ARC Centre of Excellence in Plant Energy Biology is a facility organization based out in . It is known for research contribution in the topics: Biology & Pyruvate decarboxylation. The organization has 1 authors who have published 2 publications receiving 15 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors demonstrate that feeding isolated mitochondria with uniformly labeled 13C-pyruvate and unlabeled malate enables the assessment of pyruvates contribution from different sources to intermediate production in the tricarboxylic acid cycle.
Abstract: The majority of the pyruvate inside plant mitochondria is either transported into the matrix from the cytosol via the mitochondria pyruvate carrier (MPC) or synthesized in the matrix by alanine aminotransferase (AlaAT) or NAD-malic enzyme (NAD-ME). Pyruvate from these origins could mix into a single pool in the matrix and contribute indistinguishably to respiration via the pyruvate dehydrogenase complex (PDC), or these molecules could maintain a degree of independence in metabolic regulation. Here we demonstrate that feeding isolated mitochondria with uniformly labelled 13C-pyruvate and unlabelled malate enables the assessment of pyruvate contribution from different sources to intermediate production in the tricarboxylic acid cycle. Imported pyruvate was the preferred source for citrate production even when the synthesis of NAD-ME-derived pyruvate was optimized. Genetic or pharmacological elimination of MPC activity removed this preference and allowed an equivalent amount of citrate to be generated from the pyruvate produced by NAD-ME. Increasing the mitochondrial pyruvate pool size by exogenous addition affected only metabolites from pyruvate transported by MPC, whereas depleting the pyruvate pool size by transamination to alanine affected only metabolic products derived from NAD-ME. PDC was more membrane-associated than AlaAT and NAD-ME, suggesting that the physical organization of metabolic machinery may influence metabolic rates. Together, these data reveal that the respiratory substrate supply in plants involves distinct pyruvate pools inside the matrix that can be flexibly mixed on the basis of the rate of pyruvate transport from the cytosol. These pools are independently regulated and contribute differentially to organic acid export from plant mitochondria.

10 citations

Journal ArticleDOI
TL;DR: In this article , the authors measured protein degradation rate in shoots and roots of Arabidopsis (Arabidopsis thaliana) atg5 and atg11 mutants and found that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific glycolytic enzymes and of other cytosol, chloroplast, and ER-resident proteins.
Abstract: Identification of autophagic protein cargo in plants in autophagy-related genes (ATG) mutants is complicated by changes in protein synthesis and protein degradation. To detect autophagic cargo, we measured protein degradation rate in shoots and roots of Arabidopsis (Arabidopsis thaliana) atg5 and atg11 mutants. These data show that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific glycolytic enzymes and of other cytosol, chloroplast, and ER-resident proteins, and a specialized role for ATG11 in degradation of proteins from mitochondria and chloroplasts. Protein localization in transformed protoplasts and degradation assays in the presence of inhibitors confirm a role for autophagy in degrading glycolytic enzymes. Autophagy induction by phosphate (Pi) limitation changed metabolic profiles and the protein synthesis and degradation rates of atg5 and atg11 plants. A general decrease in the abundance of amino acids and increase in secondary metabolites in autophagy mutants was consistent with altered catabolism and changes in energy conversion caused by reduced degradation rate of specific proteins. Combining measures of changes in protein abundance and degradation rates, we also identify ATG11 and ATG5-associated protein cargo of low Pi-induced autophagy in chloroplasts and ER-resident proteins involved in secondary metabolism.

5 citations


Authors

Showing all 1 results

NameH-indexPapersCitations
4A0-N02 PDF Dumps2215
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20222