scispace - formally typeset
Search or ask a question
JournalISSN: 2076-2615

Animals 

Multidisciplinary Digital Publishing Institute
About: Animals is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Medicine & Biology. It has an ISSN identifier of 2076-2615. It is also open access. Over the lifetime, 5693 publications have been published receiving 7287 citations.
Topics: Medicine, Biology, Internal medicine, Chemistry, Gene

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
19 Jan 2022-Animals
TL;DR: Current strategies and innovations being used for Litopenaeus vannamei in production systems, nutrition, and breeding are reviewed and the synergies across these areas that can support the production of healthy and high-quality shrimp in super-intensive systems are discussed.
Abstract: Simple Summary The shrimp sector has been one of the fastest-growing agri-food systems in the last 10 years. To overcome the increasing market demand, the transition to the intensification of shrimp farming is a reality in many countries. In addition, the desire to mitigate the risks posed by pathogens has driven many farmers to preference more controlled intensive systems with higher biosecurity. Shrimp nutrition and breeding are other areas that have directly enabled and improved intensification and will continue to be critical to ongoing growth in this sector. From this perspective, the aim of this review is to provide an update of the current production systems and strategies and explore the advances and key contributions that nutrition, breeding, and pathogen surveillance are having towards intensification and super-intensive shrimp culture. Abstract Intensification of the shrimp sector, also referred to as vertical expansion, has been predominately driven by consecutive incidences of global disease outbreaks, which have caused enormous economic loss for the main producer countries. A growing segment of the shrimp farming industry has opted to use production systems with higher density, biosecurity, and operating control to mitigate the risks posed by disease. However, successful super-intensive shrimp production is reliant on an advanced understanding of many important biological and economic parameters in the farming system, coupled with effective monitoring, to maintain optimal production. Compared to traditional extensive or semi-intensive systems, super-intensive systems require higher inputs of feed, energy, labor, and supplements. These systems are highly sensitive to the interactions between these different inputs and require that the biological and economical parameters of farming are carefully balanced to ensure success. Advancing nutritional knowledge and tools to support consistent and efficient production of shrimp in these high-cost super-intensive systems is also necessary. Breeding programs developing breeding-lines selected for these challenging super-intensive environments are critical. Understanding synergies between the key areas of production systems, nutrition, and breeding are crucial for super-intensive farming as all three areas coalesce to influence the health of shrimp and commercial farming success. This article reviews current strategies and innovations being used for Litopenaeus vannamei in production systems, nutrition, and breeding, and discusses the synergies across these areas that can support the production of healthy and high-quality shrimp in super-intensive systems. Finally, we briefly discuss some key issues of social license pertinent to the super-intensive shrimp farming industry.

34 citations

Journal ArticleDOI
08 Jan 2022-Animals
TL;DR: The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented.
Abstract: The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.

33 citations

Journal ArticleDOI
01 Apr 2022-Animals
TL;DR: In this article , a tentative local model is developed concerning on-the-ground data, helping veterinarians, foresters, and wildlife ecologists enforce management health policies in a One Health perspective.
Abstract: Simple Summary Canine distemper virus (CDV) is a pathogen that affects wildlife with particular regard to Canidae family such as red foxes, wolves, etc. In this study, we focus on CDV outbreaks in the Aosta Valley territory, an alpine region in the NW of Italy which was affected by important waves of this disease during the years 2015–2020 (hereinafter called τ). Ground data are collected on the entire territory at a municipality level. The detection of the canine distemper virus is performed by means of real-time PCR. By adopting satellite remote-sensing data, we notice that CDV trends are strongly related to anomalies in the NDVI entropy changes through (τ). A tentative local model is developed concerning on-the-ground data, helping veterinarians, foresters, and wildlife ecologists enforce management health policies in a One Health perspective. Abstract Changes in land use and land cover as well as feedback on the climate deeply affect the landscape worldwide. This phenomenon has also enlarged the human–wildlife interface and amplified the risk of potential new zoonoses. The expansion of the human settlement is supposed to affect the spread and distribution of wildlife diseases such as canine distemper virus (CDV), by shaping the distribution, density, and movements of wildlife. Nevertheless, there is very little evidence in the scientific literature on how remote sensing and GIS tools may help the veterinary sector to better monitor the spread of CDV in wildlife and to enforce ecological studies and new management policies in the near future. Thus, we perform a study in Northwestern Italy (Aosta Valley Autonomous Region), focusing on the relative epidemic waves of CDV that cause a virulent disease infecting different animal species with high host mortality. CDV has been detected in several mammalian from Canidae, Mustelidae, Procyonidae, Ursidae, and Viverridae families. In this study, the prevalence is determined at 60% in red fox (Vulpes vulpes, n = 296), 14% in wolf (Canis lupus, n = 157), 47% in badger (Meles meles, n = 103), and 51% in beech marten (Martes foina, n = 51). The detection of CDV is performed by means of real-time PCR. All the analyses are done using the TaqMan approach, targeting the chromosomal gene for phosphoprotein, gene P, that is involved in the transcription and replication of the virus. By adopting Earth Observation Data, we notice that CDV trends are strongly related to an altitude gradient and NDVI entropy changes through the years. A tentative model is developed concerning the ground data collected in the Aosta Valley region. According to our preliminary study, entropy computed from remote-sensing data can represent a valuable tool to monitor CDV spread as a proxy data predictor of the intensity of fragmentation of a given landscape and therefore also to monitor CDV. In conclusion, the evaluation from space of the landscape variations regarding the wildlife ecological corridors due to anthropic or natural disturbances may assist veterinarians and wildlife ecologists to enforce management health policies in a One Health perspective by pointing out the time and spatial conditions of interaction between wildlife. Surveillance and disease control actions are supposed to be carried out to strengthen the usage of geospatial analysis tools and techniques. These tools and techniques can deeply assist in better understanding and monitoring diseases affecting wildlife thanks to an integrated management approach.

29 citations

Journal ArticleDOI
01 Jan 2022-Animals
TL;DR: The core aim of this review was exploring the use of complementary strategies, highlighting those based on -omics tools, to assess the effects of using the available antibiotic-free alternatives and their role in lowering dependency on the existing antimicrobial substances to manage bacterial infections in poultry effectively.
Abstract: Simple Summary This review is focused on describing the main available antibiotic-free strategies that may be implemented to control or reduce the impact associated with Salmonella infection in poultry. These alternatives have been cataloged in two groups: feeding-based (prebiotics, probiotics, synbiotics, postbiotics, and phytobiotics) and non-feeding-based strategies (bacteriophages, in ovo applications, and vaccines). Moreover, we highlighted the relevance of the omics as a tool to design and validate the effects and efficacy of these kinds of treatments when Salmonella control is pursued. Abstract Salmonella spp. is a facultative intracellular pathogen causing localized or systemic infections, involving economic and public health significance, and remains the leading pathogen of food safety concern worldwide, with poultry being the primary transmission vector. Antibiotics have been the main strategy for Salmonella control for many years, which has allowed producers to improve the growth and health of food-producing animals. However, the utilization of antibiotics has been reconsidered since bacterial pathogens have established and shared a variety of antibiotic resistance mechanisms that can quickly increase within microbial communities. The use of alternatives to antibiotics has been recommended and successfully applied in many countries, leading to the core aim of this review, focused on (1) describing the importance of Salmonella infection in poultry and the effects associated with the use of antibiotics for disease control; (2) discussing the use of feeding-based (prebiotics, probiotics, bacterial subproducts, phytobiotics) and non-feeding-based (bacteriophages, in ovo injection, vaccines) strategies in poultry production for Salmonella control; and (3) exploring the use of complementary strategies, highlighting those based on -omics tools, to assess the effects of using the available antibiotic-free alternatives and their role in lowering dependency on the existing antimicrobial substances to manage bacterial infections in poultry effectively.

23 citations

Journal ArticleDOI
24 Mar 2022-Animals
TL;DR: The beneficial roles of essential oils in aquaculture is reviewed and the outputs illustrated that herbal essential oils are exciting alternatives to antibiotics with prominent growth promotion, antioxidative, and immunostimulant roles.
Abstract: Simple Summary Essential oils, also known as aetheroleum, have a variety of therapeutic properties, including analgesic, adaptogen, and astringents, among others. Essential oils have potential growth-promoting, antibacterial, and immunostimulant effects for several fish species. Furthermore, they potentiate the antioxidative capacity and the resistance of aquatic animals against infectious diseases. This article spotlights on the essential oils derived from selected medicinal plants, and their roles in the improvement of the performances of aquatic animals. Abstract The aquaculture sector is one of the main activities contributing to food security for humanity around the globe. However, aquatic animals are susceptible to several farming stressors involved in deteriorated growth performance, reduced productivity, and eventually high mortality rates. In some countries still, antibiotics and chemotherapies are comprehensively applied to control biotic stressors. Aside from the apparent benefits, the continuous usage of antibiotics develops bacterial resistance, deteriorates bacterial populations, and accumulates these compounds in the aquatic environment. Alternatively, environmentally friendly additives were used to avoid the direct and indirect impacts on the aquatic ecosystem and human health. In aquaculture, medicinal herbs and extracts are extensively used and approved for their growth-promoting, anti-inflammatory, and antioxidative properties. Herbal essential oils contain many bioactive components with powerful antibacterial, antioxidative, and immunostimulant potentials, suggesting their application for aquatic animals. Essential oils can be provided via diet and can benefit aquatic animals by improving their well-being and health status. The use of essential oils in aquafeed has been studied in a variety of aquatic animals to determine their beneficial roles and optimum doses. The outputs illustrated that herbal essential oils are exciting alternatives to antibiotics with prominent growth promotion, antioxidative, and immunostimulant roles. Herein, we reviewed the beneficial roles of essential oils in aquaculture. This review also aims to describe trends in herbal essential oils use, mainly in commercial fish species, and to analyze different factors that affect essential oils’ efficacy on the growth performance, antioxidative, and immune responses of finfish species.

22 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20232,187
20223,670