scispace - formally typeset
Search or ask a question

Showing papers in "Applied mechanics in 2023"


Journal ArticleDOI
TL;DR: In this article , a comparative investigation of data-driven, physics-based, and hybrid models for the fatigue lifetime prediction of structural adhesive joints in terms of complexity of implementation, sensitivity to data size, and prediction accuracy is presented.
Abstract: Here, a comparative investigation of data-driven, physics-based, and hybrid models for the fatigue lifetime prediction of structural adhesive joints in terms of complexity of implementation, sensitivity to data size, and prediction accuracy is presented. Four data-driven models (DDM) are constructed using extremely randomized trees (ERT), eXtreme gradient boosting (XGB), LightGBM (LGBM) and histogram-based gradient boosting (HGB). The physics-based model (PBM) relies on the Findley’s critical plane approach. Two hybrid models (HM) were developed by combining data-driven and physics-based approaches obtained from invariant stresses (HM-I) and Findley’s stress (HM-F). A fatigue dataset of 979 data points of four structural adhesives is employed. To assess the sensitivity to data size, the dataset is split into three train/test ratios, namely 70%/30%, 50%/50%, and 30%/70%. Results revealed that DDMs are more accurate, but more sensitive to dataset size compared to the PBM. Among different regressors, the LGBM presented the best performance in terms of accuracy and generalization power. HMs increased the accuracy of predictions, whilst reducing the sensitivity to data size. The HM-I demonstrated that datasets from different sources can be utilized to improve predictions (especially with small datasets). Finally, the HM-I showed the highest accuracy with an improved sensitivity to data size.

1 citations


Journal ArticleDOI
TL;DR: In this paper , a combination of digital image correlation (DIC) and acoustic emission (AE) is used to locate and classify the type of damage depending on the stacking sequence of the laminate during flexural loading.
Abstract: Understanding the effect of staking sequences and identifying the damage occurring within a structure using a structural health monitoring system are the keys to an efficient design of composite-based parts. In this research, a combination of digital image correlation (DIC) and acoustic emission (AE) is used to locate and classify the type of damage depending on the stacking sequence of the laminate during flexural loading. As a first step, the results of the strain fields for unidirectional, cross-ply, and quasi-isotropic laminates were compared to discuss their global behavior and to correlate the different damage patterns with the possible failure mechanisms. The damage was then addressed using a comprehensive interpretation of the acoustic emission signatures and the K-means classification of the acoustic events. The development of each damage mechanism was correlated to the applied load and expressed as a function of the loading rate to highlight the effect of the stacking sequence. Finally, the results of DIC and AE were combined to improve the reliability of the damage investigation without limiting the failure mechanism to matrix cracking, interfacial failure, and fiber breakage, as expected by the unsupervised event clustering.

1 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigate the initiation and propagation of delamination in dependence of structure geometry and quality of the metal-polymer bonding and show that even weakly bonded metal films sustain moderate strains well above the limits of classical electronic materials before the onset of delaminations in the soft islands structures.
Abstract: Stretchable electronics rely on sophisticated structural designs to allow brittle metallic conductors to adapt to curved or moving substrates. Patterns of soft islands and stable cracks in layered silver-PDMS composites provide exceptional stretchability by means of strain localization as the cracks open and the islands strain. To investigate the reliability and potential failure modes, we study the initiation and propagation of delamination in dependence of structure geometry and quality of the metal-polymer bonding. Our numerical experiments show a well-bonded metal film to be under no risk of delamination. Even weakly bonded metal films sustain moderate strains well above the limits of classical electronic materials before the onset of delamination in the soft islands structures. If delamination occurs, it does so in predictable patterns that retain functionality over a remarkable strain range in the double-digit percent range before failure, thus, providing safety margins in applications.

1 citations


Journal ArticleDOI
TL;DR: In this article , the static performance of composite steering knuckle due to drive on an equivalent road, including different types of roughness and maneuvers, was analyzed using the multi-body dynamics (MBD) method.
Abstract: This article presents the static performance of composite steering knuckle due to drive on an equivalent road, including different types of roughness and maneuvers. To achieve this purpose, the driving of a full-vehicle model was simulated using the multi-body dynamics (MBD) method, and the imposed loads on connection points of the steering knuckle to different components of the suspension system were extracted considering various maneuvers. Next, CATIA software was used to prepare a smooth model of the steering knuckle by employing coordinate measuring machine (CMM) data. Stress analysis was performed under the maximum value of the loading history in finite element (FE) software. Eventually, the safety factor was calculated based on some well-known criteria for static failure of the composite materials. Moreover, the optimum value of tungsten carbide as a reinforcing substance in aluminum composite was estimated to increase failure strength. The results show that an increase in tungsten carbide leads to an increase in the strength of the steering knuckle under purely axial loads (normal stress criterion) and also that an increase in this substance leads to a decrease in the strength of the part under shear loads (shear stress criterion). Therefore, based on the nature of the loads (i.e., multi-axial non-proportional random amplitude loading conditions) applied to the automotive steering knuckle due to actual conditions, this metal matrix composite (aluminum matrix and tungsten carbide as reinforcement) is not practical.

1 citations


Journal ArticleDOI
TL;DR: In this paper , a simulation model was developed that allows estimating the flight performance and analyzing the mission of a fixed-wing multi-rotor Unmanned Aerial Vehicle (UAV) with a hybrid electric propulsion system (HEPS), with both conventional and vertical takeoff and landing (VTOL) capabilities.
Abstract: Nowadays, great efforts of ongoing research are devoted to hybrid-electric propulsion technology that offers various benefits, such as reduced noise and pollution emissions and enhanced aircraft performance and fuel efficiency. The ability to estimate the performance of an aircraft in any flight situation in which it may operate is essential for aircraft development. In the current study, a simulation model was developed that allows estimating the flight performance and analyzing the mission of a fixed-wing multi-rotor Unmanned Aerial Vehicle (UAV) with a hybrid electric propulsion system (HEPS), with both conventional and Vertical Takeoff and Landing (VTOL) capabilities. The control is based on the continuous specification of pitch angle, propulsion thrust, and lift thrust to achieve the required conditions of a given flight segment. Six different missions were considered to analyze the effect of control parameters exhibiting the most influence on the UAV mission performance. An appropriate set of control parameters was selected through a multidimensional parametric study. The results show that the control parameters, if not well tuned, affect the mission performance: for example, in the deceleration transition, a longer time to reduce the cruise speed to stand still may be the result because the controller struggles to adjust the pitch angle. In addition, the implemented methodology captures the effects of transient maneuvers, unlike typical quasi-static analysis without the complexity of full simulation models.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated wind turbine structural dynamics using stochastic analysis and computational methods in both the time and frequency domains, considering the importance of the number of samples when choosing between time domain and frequency domain analyses.
Abstract: This study investigates wind turbine structural dynamics using stochastic analysis and computational methods in both the time and frequency domains. Simulations and experiments are utilized to evaluate the dynamic response of a wind turbine structure to turbulent wind loads, with the aim of validating the results based on real wind farm conditions. Two approaches are employed to analyze the dynamic responses: the frequency domain modal analysis approach, which incorporates von Kármán spectra to represent the turbulent wind loads, and the time domain Monte Carlo simulation and Newmark methods, which generate wind loads and determine dynamic responses, respectively. The results indicate that, for a larger number of samples, both methods consistently yield simulated turbulent wind loads, dynamic responses and peak frequencies. These findings are further validated through experimental data. However, when dealing with a smaller number of samples, the time domain analysis produces distorted results, necessitating a larger number of samples to achieve accurate findings, while the frequency domain method maintains accuracy. Therefore, the accurate analysis of wind turbine structural dynamics can be achieved using simulations in both the time and frequency domains, considering the importance of the number of samples when choosing between time domain and frequency domain analyses. Taking these considerations into account allows for a more comprehensive and robust analysis, ultimately leading to more effective outcomes.

Journal ArticleDOI
TL;DR: In this paper , a support vector machine (SVM) algorithm was used to extract and classify the faults of the rotating blades of a turbo-machine and compared the frequency response function spectra of the fault blade with those of the healthy blade related to the resonance frequency.
Abstract: Turbo machines develop faults in the rotating blades during operation in undesirable conditions. Such faults in the rotating blades are fatigue cracks, mechanical looseness, imbalance, misalignment, etc. Therefore, it is crucial that the blade faults should be detected and diagnosed in order to minimize the severe damage of such machines. In this paper, vibration analysis of the rotating blades is conducted using an experimental laboratory setup in order to develop a methodology to detect faults in the rotating blades. The faults considered for the study include cracks and mechanical looseness for which dynamic responses are recorded using a laser vibrometer. Analysis has been carried out by comparing the frequency response function spectrums of the fault blade with those of the healthy blade related to the resonance frequency. The Internet of Things and wireless sensor networks are implemented to transmit the measured data to the cloud platform. A support vector machine algorithm is used for preparing the learning model in order to extract and classify the faults of the rotating blades. It can be clearly seen from the results that there is variation in the frequency response function spectrums of healthy and faulty conditions of the rotating blades.

Journal ArticleDOI
TL;DR: In this paper , a pragmatic method for how to include the stochastic failure of glass in crash and impact simulations is presented, which includes a fracture mechanical model for the strain rate-dependent failure, an experimental determination of the glass strength for the different areas of a windshield (surface, edge, and screenprinting area), a statistical evaluation of the experimental data, and a computation of an HIC probability distribution by stochy simulation.
Abstract: In accidents involving cars with pedestrians, the impact of the head on structural parts of the vehicle presents a significant risk of injury. If the head hits the windshield, the injury is highly influenced by glass fracture. In pedestrian protection tests, a head form impactor is shot on the windshield while the resultant acceleration at the centre of gravity of the head is measured. To assess the risk of fatal or serious injury, a head injury criterion (HIC) as an explicit function of the measured acceleration can be determined. The braking strength of glass, which has a major impact on the head acceleration, however, is not deterministic but depends on production-related microcracks on the glass surface as well as on the loading rate. The aim of the present paper is to show a pragmatic method for how to include the stochastic failure of glass in crash and impact simulations. The methodology includes a fracture mechanical model for the strain rate-dependent failure of glass, an experimental determination of the glass strength for the different areas of a windshield (surface, edge, and screen-printing area), a statistical evaluation of the experimental data, and a computation of an HIC probability distribution by stochastic simulation.

Journal ArticleDOI
TL;DR: In this paper , all-atom (AA) molecular dynamics models of cellulose microfibrils (CMFs) were developed for the process of structural failure or degradation of a hierarchical material of multiple CMF fibers, due to shear deformation.
Abstract: This study aims to understand the mechanical properties of cellulose nanofibers (CNFs), a nano-sized material element of woods or plants. We develop all-atom (AA) molecular dynamics models of cellulose microfibrils (CMFs), which are the smallest constituent of CNFs. The models were designed for the process of structural failure or the degradation of a hierarchical material of multiple CMF fibers, due to shear deformation. It was assumed that two CMFs were arranged in parallel and in close contact, either in a vacuum or in water. The CMF models in water were built by surrounding AA-modeled water molecules with a few nanometers. Shear deformation was applied in the axial direction of the CMF or in the direction parallel to molecular sheets. Shear moduli were measured, and they agree with previous experimental and computational values. The presence of water molecules reduced the elastic modulus, because of the behavior of water molecules at the interface between CMFs as a function of temperature. In the inelastic region, the CMF often broke down inside CMFs in a vacuum condition. However, in water environments, two CMFs tend to slip away from each other at the interface. Water molecules act like a lubricant between multiple CMFs and promote smooth sliding.

Journal ArticleDOI
TL;DR: In this paper , the Kirchhoff analogy between the oscillation of a pendulum and the static bending of an elastic beam was applied to the stability analysis of an inverted pendulum on a vibrating foundation (the Kapitza pendulum).
Abstract: The Kirchhoff analogy between the oscillation of a pendulum (in the time domain) and the static bending of an elastic beam (in the spatial domain) is applied to the stability analysis of an inverted pendulum on a vibrating foundation (the Kapitza pendulum). The inverted pendulum is stabilized if the frequency and amplitude of the vibrating foundation exceed certain critical values. The system is analogous to static bending a wavy (patterned) beam subjected to a tensile load with appropriate boundary conditions. We analyze the buckling stability of such a wavy beam, which is governed by the Mathieu equation. Micro/nanopatterned structures and surfaces have various applications including the control of adhesion, friction, wettability, and surface-pattern-induced phase control.

Journal ArticleDOI
TL;DR: In this article , an experimental investigation was conducted using a cooper bare surface as a heating surface under a constant mass flux of deionized water at a subcooled inlet temperature ΔTsub of 70 K under atmospheric pressure conditions on a closed-loop.
Abstract: Water–copper is one of the most common combinations of working fluid and heating surface in high-performance cooling systems. Copper is usually selected for its high thermal conductivity and water for its high heat transfer coefficient, especially in the two-phase regime. However, copper tends to suffer oxidation in the presence of water and thus the heat flux performance is affected. In this research, an experimental investigation was conducted using a cooper bare surface as a heating surface under a constant mass flux of 600 kg·m−2·s−1 of deionized water at a subcooled inlet temperature ΔTsub of 70 K under atmospheric pressure conditions on a closed-loop. To confirm the heat transfer deterioration, the experiment was repeated thirteen times. On the flow boiling region after thirteen experiments, the results show an increase in the wall superheat ΔTsat of approximately 26% and a reduction in the heat flux of approximately 200 kW·m−2. On the other hand, the effect of oxidation on the single phase is almost marginal.

Journal ArticleDOI
TL;DR: In this paper , the authors conducted an experimental study on the tensile and flexural behavior of unidirectional carbon/flax fiber reinforced epoxy composites and single flax fibers.
Abstract: In recent years, the hybridization of natural fibers with synthetic fibers has received much attention. This paper conducted an experimental study on the tensile and flexural behavior of unidirectional carbon/flax fiber reinforced epoxy composites and single flax fibers. Four hybridization rates were considered for 16 reinforced layers in a symmetric staking sequence, with the carbon ply at the surface. The damage evolution under load increase was monitored using the acoustic emission (AE) technique. The Davies–Bouldin index and the K-means clustering algorithm were used to correlate the hybridization rates to the contribution of each damage mechanism to overall failure. AE monitoring of tensile and flexural behaviors showed that delamination and fiber breakage mechanisms dominate the composite failure, regardless of the hybridization rate.

Journal ArticleDOI
TL;DR: In this article , the authors considered the effect of damping on the transverse oscillations of an elastic string, with constant tension and mass density per unit length and friction force proportional to the velocity, described by the telegraph or wave-diffusion equation.
Abstract: The present two-part paper concerns the active vibration suppression for the simplest damped continuous system, namely the transverse oscillations of an elastic string, with constant tension and mass density per unit length and friction force proportional to the velocity, described by the telegraph or wave-diffusion equation, in two complementary parts. The initial part I considers non-resonant and resonant forcing, by concentrated point forces or continuous force distributions independent of time, with phase shift between the forced and free oscillations, in the absence of damping, in which case the forced telegraph equation reduces to the forced classical wave equation. The present and final part II uses the forced wave-diffusion equation to model the effect of damping, both as amplitude decay and phase shift in time, for non-resonant and resonant forcing by a single point force, with constant magnitude or magnitude decaying exponentially in time at an arbitrary rate. Assuming a finite elastic string fixed at both ends, the free oscillations are (i) sinusoidal modes in space-time with exponential decay in time due to damping. The non-resonant forced oscillations at an applied frequency distinct from a natural frequency are also (ii) sinusoidal in space-time, with constant amplitude and a phase shift such that the work of the applied force balances the dissipation. For resonant forcing at an applied frequency equal to a natural frequency, the sinusoidal oscillations in space-time have (iii) a constant amplitude and a phase shift of π/2. In both cases, the (ii) non-resonant or (iii) resonant forcing dominates the decaying free oscillations after some time. Even by optimizing the forcing to minimize the total energy of oscillation, it remains below the energy of the free oscillation alone, but only for a short time—generally a fraction of the period. A more effective method of countering the damped free oscillations is to use forcing with amplitude decaying exponentially in time; by suitable choice of the forcing decay relative to the free damping, the total energy of oscillation over all time can be reduced to no more than 1/16th of the energy of the free oscillation.

Journal ArticleDOI
TL;DR: In this paper , an analytical straightening model is developed which calculates optimum stroke displacements corresponding to measured straightness errors so as to achieve the desired residual deflections and eliminate straightness error.
Abstract: Straightening has to be carried out in order to ensure the straightness of a shaft, as distortions exceed the tolerance limit. Since the straightening load is typically large enough to produce plastic and residual deformation, repeated straightening loading cycles are very likely to induce cracks or fractures on the case-hardened shaft surface. In this study, in order to minimize repeated straightening cycles, an analytical straightening model is developed which calculates optimum stroke displacements corresponding to measured straightness errors so as to achieve the desired residual deflections and eliminate straightness errors. First, the hardness variation in the shaft radial direction is considered in the analytical model. Then, the proposed theoretical model is validated by numerical simulations. The results suggest that the analytically predicted stroke displacements and residual deflections agree very well with the numerical results when using induction-hardened SAE 4140 steel, and this signifies that the analytical straightening model developed in this study is capable of providing predictions of straightening stokes.

Journal ArticleDOI
TL;DR: In this article , a transformable wheel with 10 pivoting-head parts is proposed to surmount low-height obstacles that deliberately complicates the terrain such as blind roads, small steps, bumps and door sills.
Abstract: A transformable wheel designed in this study is proposed to meet the increasingly complex travel requirements of people because it is urgent to provide a smooth and barrier-free travel scheme in complex and changeable urban land. The transformable wheel, with 10 pivoting-head parts, allows vehicles with the wheels to surmount low-height obstacles that deliberately complicates the terrain such as blind roads, small steps, bumps and door sills, and to achieve low-consumption travel. In this study, we demonstrate that the transformable wheels improve its performance by nearly 30% under the road conditions of low-height obstacles and is especially suitable for carts and suitcases passing through low-height obstacles such as blind lanes and low stairs.

Journal ArticleDOI
TL;DR: High-quality academic publishing is built on rigorous peer review as discussed by the authors , which is the foundation of all academic publishing, and is also the basis for this paper. But, the quality of peer review is not guaranteed.
Abstract: High-quality academic publishing is built on rigorous peer review [...]

Journal ArticleDOI
TL;DR: In this article , the authors applied the elastic-plastic strain energy density concept to study the fatigue strength properties of a high-strength cast steel alloy G12MnMo7-4+QT.
Abstract: The fatigue strength of cast steel components is severely affected by manufacturing process-based bulk and surface imperfections. As these defect structures possess an arbitrary spatial shape, the utilization of local assessment methods is encouraged to design for service strength. This work applies the elastic–plastic strain energy density concept to study the fatigue strength properties of a high-strength cast steel alloy G12MnMo7-4+QT. A fatigue design limit curve is derived based on non-linear finite element analyses which merges experimental high-cycle fatigue results of unnotched and notched small-scale specimens tested at three different stress ratios into a unique narrow scatter band characterized by a scatter index of 1:TΔW¯(t)=2.43. A comparison to the linear–elastic assessment conducted in a preceding study reveals a significant improvement in prediction accuracy which is assigned to the consideration of the elastic–plastic material behaviour. In order to reduce computational effort, a novel approximation is presented which facilitates the calculation of the elastic–plastic strain energy density based on linear–elastic finite element results and Neuber’s concept. Validation of the assessment framework reveals a satisfying agreement to non-linear simulation results, showing an average root mean square deviation of only approximately eight percent in terms of total strain energy density. In order to study the effect of bulk and surface imperfections on the fatigue strength of cast steel components, defect-afflicted large-scale specimens are assessed by the presented elastic–plastic framework, yielding fatigue strength results which merge into the scatter band of the derived design limit curve. As the conducted fatigue assessment is based solely on linear–elastic two-dimensional simulations, the computational effort is substantially decreased. Within the present study, a reduction of approximately 400 times in computation time is observed. Hence, the established assessment framework presents an engineering-feasible method to evaluate the fatigue life of imperfective cast steel components based on rapid total strain energy density calculations.

Journal ArticleDOI
TL;DR: In this paper , the problem of finding the critical load for three beams with cross sectional heterogeneity is solved by using a novel solution strategy based on the Green functions that belong to these BVPs: the eigenvalue problems established for the critical loads are transformed into eigen value problems governed by homogeneous Fredholm integral equations with kernels that can be given in closed forms provided that the Green function of each BVP is known.
Abstract: It is our main objective to find the critical load for three beams with cross sectional heterogeneity. Each beam has three supports, of which the intermediate one is a spring support. Determination of the critical load for these beams leads to three point boundary value problems (BVPs) associated with homogeneous boundary conditions—the mentioned BVPs constitute three eigenvalue problems. They are solved by using a novel solution strategy based on the Green functions that belong to these BVPs: the eigenvalue problems established for the critical load are transformed into eigenvalue problems governed by homogeneous Fredholm integral equations with kernels that can be given in closed forms provided that the Green function of each BVP is known. Then the eigenvalue problems governed by the Fredholm integral equations can be manipulated into algebraic eigenvalue problems solved numerically by using effective algorithms. It is an advantage of the way we attack these problems that the formalism established and the results obtained remain valid for homogeneous beams as well. The numerical results for the critical forces can be applied to solve some stability problems in the engineering practice.

Journal ArticleDOI
TL;DR: In this paper , the tensile modulus of flax fiber/shape memory epoxy hygromorph composites is investigated and both decision tree and random forest algorithms are employed to analyze the data, and results showed high coefficient of determination R2 values of 0.94 and 0.95, respectively.
Abstract: Flax fiber/shape memory epoxy hygromorph composites are a promising area of research in the field of biocomposites. This paper focuses on the tensile modulus of these composites and investigates how it is affected by factors such as fiber orientation (0° and 90°), temperature (20 °C, 40 °C, 60 °C, 80 °C, and 100 °C), and humidity (50% and fully immersed) conditions. Machine learning algorithms were utilized to predict the tensile modulus based on non-linearly dependent initial variables. Both decision tree (DT) and random forest (RF) algorithms were employed to analyze the data, and the results showed high coefficient of determination R2 values of 0.94 and 0.95, respectively. These findings demonstrate the effectiveness of machine learning in analyzing large datasets of mechanical properties in biocomposites. Moreover, the study revealed that the orientation of the flax fibers had the greatest impact on the tensile modulus value (with feature importance of 0.598 and 0.605 for the DT and RF models, respectively), indicating that it is a crucial factor to consider when designing these materials.

Journal ArticleDOI
TL;DR: In this paper , a beam model that employs a recursive derivation procedure that enables the user to set the order of the governing differential equations as an input parameter, without the need for ad hoc assumptions or methodologies is presented.
Abstract: This article presents a new beam model that employs a recursive derivation procedure that enables the user to set the order of the governing differential equations as an input parameter, without the need for ad hoc assumptions or methodologies. This article employs a novel system of kinematic variables, section constants, and section functions that facilitate the development of higher-order beam models that retain a clear philosophical link to classical beam models such as Euler–Bernoulli beam theory and Timoshenko beam theory. The present beam model is a type of equivalent single layer beam model, wherein section constants are used to model the global stiffness characteristics of the beam, and section functions are used to recover sectional fields of displacements, strains, and stresses. The present beam model is solved for several example beams, and the results are compared to the results of finite element analyses. It is shown that the present beam model can accurately predict the deformed shapes and stress fields of each of the example beams. This article also reveals an interesting peculiarity of the elastic potential energy that pertains to any unidimensional beam model that is governed by differential equations that are of finite order.

Journal ArticleDOI
TL;DR: In this article , a numerical approach was implemented, to study a boiling flow in a horizontal serpentine tube, based on the Euler-Euler formalism of the Navier-Stokes equations, in which governing equations are solved for both phases of the fluid at each time step.
Abstract: A numerical approach was implemented, to study a boiling flow in a horizontal serpentine tube. A NEPTUNE_CFD two-fluid model was used, to study the behavior of the refrigerant R141b in diabatic cases. The model was based on the Euler–Euler formalism of the Navier–Stokes equations, in which governing equations are solved for both phases of the fluid at each time step. The conjugate heat transfer—between the tube wall and the fluid—was considered via a coupling with the SYRTHES 4.3 software, which solves solid conduction in three dimensions. A mesh convergence study was carried out, which found that a resolution of 40 meshes per diameter was necessary for our case. The approach was validated by comparison with an experimental study of the literature, based on the faithful reproduction of the positions of two-phase flow regime transitions in the domain. Original post-processing was used, to unravel the flow characteristics. The mean and RMS fields of void fraction, temperatures and stream wise velocities in several sections were analyzed, when statistical convergence was reached. A thermal equilibrium was reached in the saturated liquid, but not in the vapor phase, due to the flow dynamic and possibly the presence of droplets. Finally, a thermal analysis of the configuration was proposed. It demonstrated the strong coupling between the temperature distribution in the solid, and the two-phase flow regimes at stake in the fluid domain.

Journal ArticleDOI
TL;DR: In this article , a symbolic description of the moments of area of various parametric representations of such B-splines is computed, and the expressions found are then compared with alternative computational methods and checked for validity.
Abstract: The calculation of moments of area is one of the most fundamental aspects of engineering mechanics for calculating the properties of beams or for the determination of invariants in different kind of geometries. While a variety of shapes, such as circles, rectangles, ellipses, or their combinations, can be described symbolically, such symbolic expressions are missing for freeform cross-sections. In particular, periodic B-spline cross-sections are suitable for an alternative beam cross-section, e.g., for the representation of topology optimization results. In this work, therefore, a symbolic description of the moments of area of various parametric representations of such B-splines is computed. The expressions found are then compared with alternative computational methods and checked for validity. The resulting equations show a simple method that can be used for the fast conceptual computation of such moments of area of periodic B-splines.

Journal ArticleDOI
TL;DR: In this paper , a study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads is presented. And the study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements.
Abstract: This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements. Thus, in order to determine the estimated steel savings of this system as compared to the moment and braced frames, the four-story and eight-story buildings that are 96′ × 96′ in the plane and utilize moment frames, braced frame, and diagrid framing structural systems are presented. Based on the American Society of Civil Engineers (ASCE) 7–10, load combinations are considered for the designs, and the RAM structural analysis is used for the modeling and analysis of the structural systems. The findings of this study’s illustrations were the optimum for the analysis of wind of 176 kips and seismic loads of 122 kips, the building’s lateral displacements, which were the lowest at 0.045 inches, the story drift, the story stiffness, and the story shear for each structural system. In addition, the diagrid system also had the least amount of shear for all the stories, suggesting that it is better able to manage the lateral forces. These results indicate that the diagrid system is a more efficient structural system and can be recommended for use in multi-story buildings.

Journal ArticleDOI
TL;DR: In this article , the authors presented a numerical analysis of the combustion process of a gas mixture released during biomass decomposition in a domestic 25 kW coil-type boiler, where three types of biogenic fuels were taken into consideration.
Abstract: In the face of threats related to energy supply and climate change, the use of biomass is gaining importance, particularly in distributed energy systems. Combustion of biomass, including residue biomass, is considered one of the routes to increase the share of renewables in energy generation. The modeling of gaseous phase reactions remains crucial in predicting the combustion behavior of biomass and pollutant emissions. However, their simulation becomes a challenging task due to the computational cost. This paper presents a numerical analysis of the combustion process of a gas mixture released during biomass decomposition in a domestic 25 kW coil-type boiler. Three types of biogenic fuels were taken into consideration. The work aimed at examining the available tools for modeling gas burning, thus the geometry of the system was limited only to the 2D case. The thermodynamic equilibrium composition of pyrolysis gas was determined and implemented in Ansys to simulate the process. The computational results showed the potential of detailed, but reduced, combustion mechanisms of CH4/CO/H2 mixtures in predicting the main process features. The mechanism involving 85 reactions appeared to be more reliable compared to that comprising 77 reactions, particularly for volatiles with higher H2 content, whilst offering an acceptable calculation time. The burning characteristics obtained for volatiles with less CH4 and more H2 are in good agreement with the real operation conditions reported for the boiler.

Journal ArticleDOI
TL;DR: In this article , the authors proposed an optimization procedure to achieve the best configuration of multiple degrees of freedom Tuned Mass Dampers (TMDs) to mitigate the pointing error of Very-Long-Baseline Interferometry (VLBI) Earth-based radio antennae operating under aerodynamic gust conditions.
Abstract: This paper proposes an optimization procedure to achieve the best configuration of multiple degrees of freedom Tuned Mass Dampers (TMDs) to mitigate the pointing error of Very-Long-Baseline Interferometry (VLBI) Earth-based radio antennae operating under aerodynamic gust conditions. In order to determine the optimum sets of TMDs, a Multi-Objective design optimization employing a genetic algorithm is implemented. A case study is presented where fourteen operational scenarios of wind gust are considered, employing two models of atmospheric disturbances, namely the Power Spectral Density (PSD) function with a statistical profile presented by the Davenport Spectrum (DS) and a Tuned Discrete Gust (TDG) modeled as a one-minus cosine signal. It is found that the optimal configurations of TMDs are capable of reducing the pointing error of the antenna by an average of 66% and 50% for the PSD and TDG gust excitation scenarios, respectively, with a mass inclusion of 1% of the total mass of the antenna structure. The optimal TMD parameters determined herein can be utilized for design and field implementation in antenna systems, such that their structural efficiency can be enhanced for radio astronomy applications.

Journal ArticleDOI
TL;DR: In this paper , a review of the management of intracranial hemorrhages in patients receiving anticoagulant therapy presents a significant challenge for medical professionals and guidelines on managing this issue are currently lacking, prompting a review that delves into embryonic development and anatomical functions of heart valves.
Abstract: The management of an intracranial hemorrhage in patients receiving anticoagulant therapy presents a significant challenge for medical professionals. Anticoagulant treatment is intended to prevent blood clotting, but it can worsen active brain bleeds. Despite this risk, avoiding the prothrombotic state caused by mechanical heart valves remains crucial. Guidelines on managing this issue are currently lacking, prompting a review that delves into embryonic development and anatomical functions of heart valves, valve replacement therapy for diseased valves, and the need for anticoagulants. Ultimately, recent literature and cases inform discussion regarding how best to manage intracranial hemorrhages in patients with mechanical heart valves. The expectation is that this examination will offer valuable perspectives on the handling of intracranial bleeding among individuals with mechanical heart valves and stimulate additional investigations in this intricate domain, particularly through the lens of applied mechanics.

Journal ArticleDOI
TL;DR: In this paper , the authors extended and improved the strain energy criterion in the topology optimization of 2D continuum structures under a single displacement constraint, and the numerical value of the displacement constraint was taken to be equal to that obtained through the well-known Solid Isotropic Material with Penalization (SIMP) method.
Abstract: Based on a previous concept that has been successfully applied to the sizing optimization of truss and frame structures, this work extends and improves the strain energy criterion in the topology optimization of 2D continuum structures under a single displacement constraint. To make the proposed methodology transparent to other researchers and at the same time meaningful, the numerical value of the displacement constraint was taken to be equal to that obtained through the well-known Solid Isotropic Material with Penalization (SIMP) method under the same boundary conditions and the same external forces. The proposed method is more efficient than the SIMP method while leading to topologies very close to those obtained by the latter.

Journal ArticleDOI
TL;DR: In this paper , the impact testing on pristine and repaired composite materials for aerostructures is reviewed and the potential future work in this research scope is explored and the results suggest there are no major changes in the adhesive under the testing condition.
Abstract: Aircraft technologies and materials have been developing and improving drastically over the last hundred years. Over the last three decades, an interest in the use of composites for external structures has become prominent. For this to be possible, thorough research on the performance of composite materials, specifically the impact performance, have been carried out. For example, research of impact testing for pristine carbon-reinforced epoxy composites mentions matrix cracks, fibre fracture, and delamination as the failure modes that require monitoring. In addition, thorough testing has been carried out on composites repaired with an adhesive bond to observe the effects of conditioning on the adhesively bonded repair. The results suggest there are no major changes in the adhesive under the testing condition. By reviewing the impact testing on the pristine and repaired composite materials for aerostructures, this paper aims to illustrate the main findings and also explore the potential future work in this research scope.

Journal ArticleDOI
TL;DR: In this paper , the authors developed a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNNs, which was tested on two values of contrast (10 and 100).
Abstract: The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases of heterogeneous material with different shapes (circular, elliptical, square, rectangular), volume fractions of the inclusion (20%, 25%, 30%), and different contrasts between the two phases in term of Young modulus and also thermal conductivity. The contrast expresses the degree of heterogeneity in the heterogeneous material, when the value of C is quite important (C >> 1) or quite low (C << 1), it means that the material is extremely heterogeneous, while C= 1, the material becomes totally homogeneous. In the case of elastic properties, the contrast is expressed as the ratio between Young’s modulus of the inclusion and that of the matrix ( C = EiEm), while for thermal properties, this ratio is expressed as a function of the thermal conductivity of both phases (C = λiλm). In our work, the model will be tested on two values of contrast (10 and 100). These microstructures will be used to estimate the elastic and thermal behavior by calculating the effective bulk, shear, and thermal conductivity values using a finite element method. The collected databases will be trained and tested on a deep learning model composed of a first convolutional network capable of extracting features and a second fully connected network that allows, through these parameters, the adjustment of the error between the found output and the expected one. The model was verified using a Mean Absolute Percentage Error (MAPE) loss function. The prediction results were excellent, with a prediction score between 92% and 98%, which justifies the good choice of the model parameters.

Journal ArticleDOI
TL;DR: In this paper, the effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunction expansion technique, based in part on the separation of the thickness variable and partly on a modified Frobenius-type series expansion technique in conjunction with Eshelby-Stroh formalism.
Abstract: The effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunction expansion technique, based in part on the separation of the thickness variable and partly on a modified Frobenius-type series expansion technique in conjunction with Eshelby–Stroh formalism. Out of the three available, complete sets of elastic constants, only the experimental measurements using resonant ultrasound spectroscopy merit serious attention, despite reported values of c12 and, to a lesser extent, c66 being excessively high. The present investigation considers six through-thickness crack systems weakening orthorhombic mono-crystalline Yttrium barium copper oxide (YBCO) plates. More importantly, the present investigation establishes sufficient conditions for crack path stability/instability, which entail a cleavage system being easy or difficult, i.e., whether a crack would propagate in its original plane/direction or deflect to a different one. This criterion of fracture mechanics is then employed for accurate determination of the full set of elastic constants of superconducting mono-crystalline YBCO. Finally, heretofore unavailable results pertaining to the through-thickness variations of stress intensity factors and energy release rates for a crack corresponding to symmetric and skew-symmetric hyperbolic cosine loads, which also satisfy the boundary conditions on the plate surfaces, bridge a longstanding gap.