scispace - formally typeset
Search or ask a question

Showing papers in "Bacteriological Reviews in 1967"




Journal ArticleDOI
TL;DR: The zygote incompleteness effect on genetic analysis, as well as the nature of the Normal Genome and nature of Heteroclone Genomes, are studied.
Abstract: INTRODUCTION......................................... 3; NATURAL HISTORY OF A CROSS......................................... 3 MATERIALS OF A CROSS......................................... 3 Media......................................... 37 Mutagenic Treatments......................................... 37 Isolation and Description of Mutants......................................... 3 Auxotrophs......................................... 37 Resistant mutants ........... .............................. 37 Enzyme losses scored by plate tests......................................... 37 Temperature-sensitive mutants......................................... 37 Ultraviolet-sensitive mutants ......................................... 37 PROCEDURES OF GENETiC ANALYSIs......................................... 3 Methods......................................... 37 Mapping by Selecting Haploids......................................... 38 Ordering of loci......................................... 38 Effects of zygote incompleteness on genetic analysis............................ 38 Heteroclone Analysis ............ ............................. 38 Complementation tests......................................... 38 Complete analysis of segregants from heteroclones.............................. 38 \"Phenotypic\" analysis of heteroclones........................................ 38 GENOMES OF ZYGOTES AND HETEROCLONES........................................ 38 Nature of the Normal Genome......................................... 38 Nature ofZygote Genomes ................. ........................ 38 Nature of Heteroclone Genomes.......................................... 39 Comparative Considerations......................................... 39 PERSPECTIVES......................................... 39 Chromosome Transfer and Fertility ......................................... 39 Heterozygotes......................................... 39 Heterokaryons......................................... 39 Transduction and Transformation ....................................... .. 39 Meaning of Gene Arrangement on the Linkage Map.............................. 39 Comparative Gene-Enzyme Relationships........................................ 4C Mutational Analysis of Morphogenesis......................................... 4C LITERATURE CrIED............ ........4K Vol. 31, No. 4 rited in U.S.A.

341 citations


Journal ArticleDOI

191 citations









Journal ArticleDOI
TL;DR: The results confirmed the existence of a new type of sphingolipid called Corynebacterium diphtheriae, which is composed of 3Dhydroxypalmitic and 3-D-hydroxystearic acids obtained by the fermentation of fatty acids and hydrocarbons by the bacterium Torulopsis.
Abstract: 128. SVENNERHOLM, E., AND L. SVENNERHOLM. 1963. The separation of neutral blood-serum glycolipids by thin-layer chromatography. Biochim. Biophys. Acta 70:432-441. 129. SWEELEY, C. C., AND B. KLIONSKY. 1963. Fabry's disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J. Biol. Chem. 238:PC3148-3150. 130. SWEELEY, C. C., AND B. KLIONSKY. 1965. Glycolipid lipidosis: Fabry's disease, p. 618-632. In J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson [ed.], The metabolic basis of inherited disease, 2nd ed. McGraw-Hill Book Co., New York. 131. SWEELEY, C. C., AND E. A. MOSCATELLI. 1959. Qualitative microanalysis and estimation of sphingolipid bases. J. Lipid Res. 1:40-47. 132. TAKAHASHI, H. 1948. Bacterial components of Corynebacterium diphtheriae. V. Phospholipides. 2. Structure of Chargaff's corynin. J. Pharm. Soc. Japan 68:292-296. 133. TEETS, D. W., P. JOHNSON, C. L. TIPTON, AND H. E. CARTER. 1963. Isolation of a new type of sphingolipid. Federation Proc. 22:414. 134. THANNHAUSER, S. J., AND E. FRANKEL. 1931. Uber das Lignocerylsphingosine. Z. Physiol. Chem. 203:183-188. 135. THIERFELDER, H., AND E. KLENK. 1930. Die Chemie der Cerebroside und Phosphatide. J. Springer, Berlin. 136. THORPE, S. R., AND C. C. SWEELEY. 1967. Chemistry and metabolism of sphingolipids. On the biosynthesis of phytosphingosine by yeast. Biochemistry (in press). 137. THUDICHUM, J. L. W. 1874. Researches on the chemical constitution of the brain. Report of the Medical Officer of Privy Council a. Local Government Board. New series no. III, 113, London. 138. THUDICHUM, J. L. W. 1880. Further researches on the chemical constitution of the brain, and of the organoplastic substances. 9th A nnual Report of the Local Government Board, 18791880. Supplement B, no. 3, Report of the Medical Officer for 1879, London, p. 143-188. 139. THUDICHUM, J. L. W. 1884. A treatise on the chemical constitution of the brain. Bailliere, Tindall and Cox, London, p. 105. 140. TULLOCH, A. P., AND J. F. T. SPENCER. 1964. Extracellular glycolipids of Rhodotorula species. The isolation and synthesis of 3-Dhydroxypalmitic and 3-D-hydroxystearic acids. Can. J. Chem. 42:830-835. 141. TULLOCH, A. P., J. F. T. SPENCER, AND P. A. J. GORIN. 1962. The fermentation of long-chain compounds by Torulopsis magnoliae. I. Structures of the hydroxy fatty acids obtained by the fermentation of fatty acids and hydrocarbons. Can. J. Chem. 40:1326-1338. 142. VAN AMMERS, M., M. H. DEINEMA, C. A. LANDHEER, AND M. H. M. VAN ROOYEN. 1964. Note on the isolation of B-hydroxypalmitic acid from the extracellular lipids of Rhodotorula glutinis. Rec. Trav. Chim. 83:708-710. 143. WAGNER, H., AND W. SOFCSIK. 1966. U0ber neue Sphingolipide der Hefe. Biochem. Z. 344: 314-316. 144. WICKERHAM, L. J., AND F. H. STODOLA. 1960. Formation of extracellular sphingolipids by microorganisms. I. Tetraacetylphytosphingosine from Hansenula ciferri. J. Bacteriol. 80: 484-491. 145. WOODBINE, M. 1959. Microbial fat: microorganisms as potential fat producers. Prog. Ind. Microbiol. 1:181-245. 146. YABUTA, T., Y. SUMIKI, AND K. TAMARI. 1941. Chemical constituents of inekoji. VIII. Arabityl margarate. J. Agr. Chem. Soc. Japan 17:307-310. 147. YAMAKAWA, T., S. YOKOYAMA, AND N. Kiso. 1962. Structure of main globoside of human erythrocytes. J. Biochem. (Tokyo) 52:228-229. 148. YAMAKAWA, T., AND S. SUZUKI. 1951. The chemistry of the lipids of post-hemolytic residue or stroma of erythrocytes. I. Concerning the ether-soluble lipids of lyophilized horse blood stroma. J. Biochem. (Tokyo) 38:199-212. 149. ZABIN, I. 1957. Biosynthesis of ceramide by rat brain homogenates. J. Am. Chem. Soc. 79: 5834-5835. 150. ZABIN, I., AND J. F. MEAD. 1953. The biosynthesis of sphingosine. I. The utilization of carboxyl-labeled acetate. J. Biol. Chem. 205: 271-277. 151. ZABIN, I., AND J. F. MEAD. 1954. The biosynthesis of sphingosine. II. The utilization of methyl-labeled acetate, formate, and ethanolamine. J. Biol. Chem. 211:87-93.






Journal ArticleDOI
TL;DR: This chapter discusses distribution in Man, distribution in Wild Mammals, and possible Arthropod Vectors in Birds.
Abstract: INTRODUCTION........................ 65 ETIOLOGY........................ 65 DETECTION AND DIAGNoss........................ 66 Clinical Features........................ 66 Virus Isolation Procedures........................ 66 Serological Techniques........................ 67 EPIDEMIOLOGY........................ 68 Natural Distribution in Man........................ 68 Laboratory Infections........................ 70 Distribution in Domestic Animals........................ 70 Distribution in Wild Mammals........................ 70 Distribution in Birds........................ 71 Possible Arthropod Vectors........................ 72 CONTROL PROCEDURES........................ 74 SUMMARY AND OUTLOOK........................ 76 LITERATURE CITED........................ 77


Journal ArticleDOI
TL;DR: Direct methods, involving zone electrophoresis, molecular-sieve chromatography, and sucrose gradient ultracentrifugation, have been carried out with appropriate known protein standards to evaluate further the nature of the biological activity of interferon.
Abstract: Interferon can now be best defined as an antiviral material produced by vertebrate cells which is effective intracellularly against a wide variety of viruses in cells of the species in which it is produced. This activity requires time to act on cells in blocking viral replication intracellularly and seems to be associated with a protein. It is usually stable over a wide range ofpH and temperature. The material has not yet been purified adequately for study as a protein. However, indirect methods, involving zone electrophoresis, molecular-sieve chromatography, and sucrose gradient ultracentrifugation, have been carried out with appropriate known protein standards to evaluate further the nature of the biological activity. Admittedly, results of such studies await validation by more precise standard protein chemical techniques when adequate amounts of purified materials are available. The physical properties of vertebrate interferons are important because they lead to an understanding of the mechanism of action and role of interferon in the cell-virus relationship. Two years ago, it was reported from this laboratory that the major components of chick, mouse, and human interferon as induced by virus were of similar but distinguishably different molecular weights upon cochromatography on G-100 Sephadex (T. C. Merigan, Bacteriol. Proc., p. 115, 1964). This finding permitted the demonstration that a single virus (Chikungunya) could induce