scispace - formally typeset
Search or ask a question
JournalISSN: 0361-0128

Economic geology and the bulletin of the Society of Economic Geologists 

Society of Economic Geologists
About: Economic geology and the bulletin of the Society of Economic Geologists is an academic journal published by Society of Economic Geologists. The journal publishes majorly in the area(s): Geology & Chemistry. It has an ISSN identifier of 0361-0128. Over the lifetime, 94 publications have been published receiving 189 citations. The journal is also known as: Economic geology, bulletin of the Society of Economic Geologists & Bulletin of the Society of Economic Geologists.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A well-understood hypogene environment of formation is vapor condensation near volcanic vents, where magmatic SO2 and H2S condense into local groundwater to produce H2SO4 and HCl-rich solutions with a pH of 1-1.5 as mentioned in this paper .
Abstract: Abstract Advanced argillic minerals, as defined, include alunite and anhydrite, aluminosilicates (kaolinite, halloysite, dickite, pyrophyllite, andalusite, zunyite, and topaz), and diaspore. One or more of these minerals form in five distinctly different geologic environments of hydrolytic alteration, with pH 4–5 to <1, most at depths <500 m. (1) Where an intrusion-related hydrothermal system, typical of that associated with porphyry Cu ± Au deposits, evolves to white-mica stability, continued ascent and cooling of the white-mica–stable liquid results in pyrophyllite (± diaspore) becoming stable near the base of the lithocap. (2) A well-understood hypogene environment of formation is vapor condensation near volcanic vents, where magmatic SO2 and HCl condense into local groundwater to produce H2SO4 and HCl-rich solutions with a pH of 1–1.5. Close to isochemical dissolution of the host rock occurs because of the high solubility of Al and Fe hydroxides at pH <2, except for the SiO2 component, which remains as a siliceous residue because of the relatively low solubility of SiO2. This residual quartz, commonly with a vuggy texture, is largely barren of metals because of the low metal content in high-temperature but low-pressure volcanic vapor. Rock dissolution causes the pH of the acidic solution to increase, such that alunite and kaolinite (or dickite or pyrophyllite at higher temperatures) become stable, forming a halo to the residual quartz. This initially barren residual quartz, which forms a lithocap horizon where permeable lithologic units are intersected by the feeder structure, may become mineralized if a subsequent white-mica–stable liquid ascends to this level and precipitates copper and gold. (3) Boiling of a hydrothermal liquid generates vapor with CO2 and H2S. Where the vapor condenses above the water table, atmospheric O2 in the vadose (unsaturated) zone causes oxidation of H2S to sulfuric acid, forming a steam-heated acid-sulfate solution with pH of 2–3. In this environment, kaolinite and alunite form in horizons above the water table at <100°C. Silica derived within the vadose zone will precipitate as amorphous silica at the water table, as the condensate follows the hydraulic gradient, causing opal replacement above and at the aquifer. (4) By contrast, where condensation of this vapor occurs below the water table, the CO2 in solution forms carbonic acid (H2CO3), leading to a pH of 4–5. This marginal carapace of condensate, with temperatures up to 150°–170°C, commonly acts as a diluent of the ascending parental NaCl liquid. This steam-heated liquid forms intermediate argillic alteration of clays, kaolinite, and Fe-Mn carbonates; this kaolinite, which can be present at depths of several hundreds of meters, can potentially be mistaken as having been caused by a steam-heated acid-sulfate or supergene overprint. (5) The final setting is supergene, caused by posthydrothermal weathering and oxidation of mainly pyrite, locally creating pH <1 liquid because of high concentrations of H2SO4 within the vadose zone and forming kaolinite, alunite, and Fe oxyhydroxides. This genetic framework of formation environments of advanced (and intermediate) argillic alteration provides the basis to interpret alteration mineralogy, in combination with alteration textures and morphology plus zonation, including the overprint of one alteration style on another. This framework can be used to help focus exploration for and assessment of hydrothermal ore deposits, including epithermal, porphyry, and volcanic-hosted massive sulfide.

22 citations

Journal ArticleDOI
TL;DR: The Sanchakou Cu deposit is located in the eastern section of the Dananhu magmatic arc in the Eastern Tianshan orogenic belt, northwest China as mentioned in this paper .
Abstract: Abstract The Sanchakou Cu deposit is located in the eastern section of the Dananhu magmatic arc in the Eastern Tianshan orogenic belt, northwest China. Sanchakou is hosted by quartz diorite and granodiorite intrusions. Chalcopyrite and bornite are the dominant ore minerals and occur as disseminations, patches, veins, and veinlets. Secondary ion mass spectrometry (SIMS) U-Pb dating of zircons shows that the ore-bearing intrusions were emplaced at ca. 435–432 Ma, recording the early subduction of the Paleo-Tianshan oceanic plate. The enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HFSEs), and moderate Mg# values, together with mantle-like bulk Sr-Nd and zircon Hf-O isotope signatures (δ18O = 4.0–5.3‰), suggest that they were generated from partial melting of metasomatized mantle materials by subducted slab fluids. In situ S and whole-rock Pb isotope results imply that the Sanchakou diorite magmas provided ore-forming components (S and metals), with additional minor metals (e.g., Cu and Pb) sourced from crustal components beneath the Dananhu arc. The redox state of diorite magmas ranges from initial high fO2 (>FMQ + 2, where FMQ is the fayalite-magnetite-quartz buffer) to relatively low fO2 (<FMQ + 2) upon magma ascent and cooling. The late-stage less oxidized magma compositions are consistent with the presence of magmatic sulfides in primary plagioclase and magnetite. Estimates of water-sulfur-chlorine contents in magma using plagioclase, amphibole, and apatite compositions reveal that the diorite magmas had high water (>7 wt %), normal S (8–393 ppm), and systematically low Cl (38–1,100 ppm) contents. A constant and favorable elevated magma oxidation state appears critical for generating an economic porphyry Cu deposit. Additionally, Cl melt concentrations may be a key factor that controlled metal fertility of the deposits in the Eastern Tianshan, although the mineralization potential may also relate to depth of emplacement of the hydrothermal system. The anomalous presence of stellerite with chalcopyrite in late-stage veins indicates that original porphyry-style mineralization at Sanchakou underwent deformation-related modification after its formation.

14 citations

Journal ArticleDOI
TL;DR: In this article , the conditions and controls of cobalt transport and deposition and develops/refines plausible models for the genesis of these deposits are assessed and developed using a combination of thermodynamic data and geologic information, and a model in which Co is leached from mafic and ultramafic rocks by oxidized, chloride-rich hydrothermal fluids, derived from evaporation, and deposited in response to decreasing fO2 in carbonaceous sediments that accumulated in intracratonic rift basins.
Abstract: In a companion paper in this issue, the authors reviewed the properties of cobalt, its mineralogy, and the processes that concentrate it to exploitable levels. Using this information and knowledge of the geology of the principal types of cobalt deposits, the present paper assesses the conditions and controls of cobalt transport and deposition and develops/refines plausible models for the genesis of these deposits. Economic cobalt deposits owe their origins to the compatible nature of Co2+, which causes it to concentrate in the mantle, mainly in olivine, and to be released to magmas only after high degrees of partial melting (i.e., to komatiitic and basaltic magmas). Thus, there is a very close association between cobalt deposits and mafic and ultramafic rocks. Magmatic deposits, in which Co is subordinate to Ni, develop through sulfide-silicate liquid immiscibility as a result of the very strong preference of these metals for the sulfide liquid. Predictably, these deposits reach their highest grades where hosted by olivine-rich ultramafic rocks. Approximately 60% of the world’s cobalt resource is of hydrothermal origin and is contained in sediment-hosted copper deposits in the Democratic Republic of the Congo. Using a combination of thermodynamic data and geologic information, we have refined a model in which Co is leached from mafic and ultramafic rocks by oxidized, chloride-rich hydrothermal fluids, derived from evaporation, and deposited in response to decreasing fO2 in carbonaceous sediments that accumulated in intracratonic rift basins. Economic Co deposits also develop as hydrothermal vein systems, in which Co is the primary ore metal. In the only deposits of this type that are currently being exploited (Bou Azzer, Morocco), the source of the Co was an adjacent serpentinized peridotite. The ore fluid was an oxidized, high-salinity brine derived from evaporites, and deposition occurred in response to pH neutralization by the felsic to intermediate igneous host. The final major class of Co deposits is laterite-hosted and develops on olivine-rich ultramafic rocks or their serpentinized equivalents. Our thermodynamic modeling shows that Co is leached from an ultramafic source by mildly acidic fluids as Co2+ and is transported down the laterite profile, eventually concentrating by a combination of adsorption on Mn oxides, incorporation in the structure of absolane (an Mn oxide), and precipitation as heterogenite (HCoO2). The dissolution of cobalt at the surface and its deposition at depth are controlled mainly by pH, which decreases downward; oxygen fugacity, which also decreases downward, has the opposite effect, inhibiting dissolution of cobalt at the surface and promoting it at depth. It is our hope that this introduction to the economic geology of cobalt and the processes responsible for the formation of cobalt-bearing ores will help guide future studies of cobalt ore genesis and strategies for the exploration of this critical metal.

13 citations

Journal ArticleDOI
TL;DR: In this article , the authors evaluate the properties of cobalt and the history of its discovery, briefly describe its mineralogy, and explore the processes that concentrate it to potentially exploitable levels.
Abstract: Cobalt is in high demand because of the key role that cobalt-lithium-ion batteries are playing in addressing the issue of global warming, particularly in facilitating the transition from the internal combustion engine to electrically driven vehicles. Here, we review the properties of cobalt and the history of its discovery, briefly describe its mineralogy, and explore the processes that concentrate it to potentially exploitable levels. Economic cobalt deposits owe their origin to the compatible nature of Co2+, its concentration in the mantle in olivine, and its release, after high degrees of partial melting, to komatiitic and (to a lesser extent) basaltic magmas. Primary magmatic deposits, in which Co is subordinate to Ni, develop through the separation of immiscible sulfide liquids from mafic and ultramafic magmas and the very strong partitioning of these metals into the sulfide liquid. We evaluate the factors that concentrate cobalt to economic levels by these processes. Cobalt is also concentrated by aqueous fluids, either at ambient temperature in laterites developed over ultramafic rocks or hydrothermally in sediment-hosted copper deposits and in cobalt-rich vein deposits, where it crystallizes mainly as sulfide and arsenic-bearing minerals, respectively. Using the available thermodynamic data for aqueous Co species, we evaluate cobalt speciation as a function of temperature and show that, whereas it is transported at ambient temperature in most environments as the simple ion (Co2+), it is most mobile in hydrothermal systems as chloride species. Based on thermodynamic data compiled from a variety of sources, we evaluate stability relationships among some of the principal cobalt sulfide and oxide minerals as a function of temperature, pH, fO2, and αH2S and, in conjunction with the aqueous speciation data, determine their solubility. This information is used, in turn, to predict the physicochemical conditions most favorable for cobalt transport and ore formation by hydrothermal fluids. As thermodynamic data are not available for the cobalt arsenide and sulfarsenide minerals that form the vein-type ore deposits, we use chemographic analysis to qualitatively evaluate their stability relationships and predict the physicochemical controls of ore formation. The data and interpretations of processes presented in this paper provide the theoretical basis for a companion paper in this issue in which we develop plausible models for the genesis of the principal cobalt deposit types.

10 citations

Journal ArticleDOI
TL;DR: In this paper , Wang et al. proposed that the separation of Tungsten and Sn granites was due to differences in the mobility of W and Sn during partial melting of the metasedimentary protolith.
Abstract: Tungsten and Sn display similar behavior during magmatic processes and are commonly associated spatially and genetically with highly evolved granites. Nonetheless, they typically form separate deposits, even if their associated granites have the same protolith. This separation may be due to the fractionation of the metals at the magmatic-hydrothermal transition or their differential mobility during partial melting of the metasedimentary protolith. If this separation occurred at the magmatic-hydrothermal transition, the ages of the W and Sn deposits would be very similar, whereas if it occurred during partial melting, the deposits are likely to have different ages because of the concentration of the metals in different magma batches and, in extreme cases, during different magmatic events. New age data from the Wangxianling ore field in the western part of the world-class Nanling W-Sn metallogenic province demonstrate that the W and Sn mineralization took place at different times. The W mineralization (219.5 ± 3.4 Ma) is related to Triassic granites (224.9–217.8 Ma), whereas the Sn mineralization is related to granites of Late Jurassic age (154.7 ± 1.1 Ma). This difference in ages rules out fractionation at the magmatic-hydrothermal transition as an explanation for the spatial separation of the W and Sn deposits and implies that the separation was due to differences in the mobility of W and Sn during partial melting. Both suites of granite originated from the partial melting of the same metasedimentary rocks, and both are reduced and highly evolved. The W granites, however, have a lower zircon saturation temperature (~750°C) than the Sn granites (~800°C), which indicates that the magma forming the W granites was mainly the product of muscovite-dehydration melting, whereas that forming the Sn granites was largely the result of biotite-dehydration melting. The different melting paths indicate that W released during muscovite breakdown dissolved in the magma, whereas Sn was sequestered by restite biotite. At the higher melting temperature, the residual W and Sn, released during the subsequent breakdown of biotite, dissolved in the magma. Thus, the magma that generated at low temperature was enriched in W, leading to subsequent W mineralization, whereas the magma that generated at high temperature was enriched in Sn and produced an Sn-mineralized granite. The whole-rock Sr-Nd isotope data for the Triassic W granites plot in the compositional field of the regional basement rocks and are consistent with partial melting of an orogenically thickened crust by internal heating in a collisional setting. In contrast, the Sr-Nd isotope data for the Late Jurassic Sn(-W) granites are displaced toward a mantle composition, likely reflecting contributions from mantle-derived material. Given the emplacement of many of the Late Jurassic Sn(-W) granites close to the Chenzhou-Linwu fault, we propose that this structure was the focus of decompression melting of the mantle and the injection of mantle-derived melts into the crust during the Late Jurassic, which supplied the additional heat for the melting at higher temperature needed to generate magmas enriched in Sn. This model, which is based on differences in the behavior of Sn and W during crustal melting, is potentially applicable to other Sn-W metallogenic provinces where Sn and W deposits are temporally separated.

10 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202337
202296