scispace - formally typeset
Search or ask a question
JournalISSN: 0142-5463

International Journal of Cosmetic Science 

Wiley-Blackwell
About: International Journal of Cosmetic Science is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Medicine & Stratum corneum. It has an ISSN identifier of 0142-5463. Over the lifetime, 2136 publications have been published receiving 43772 citations.


Papers
More filters
Journal ArticleDOI
H. Lambers1, S. Piessens1, A. Bloem1, H. Pronk1, P. Finkel1 
TL;DR: Assessment of skin surface pH of the volar forearm before and after refraining from showering and cosmetic product application and the effect of pH on adhesion of resident skin microflora was assessed; an acid skin pH (4–4.5) keeps the resident bacterial flora attached to the skin, whereas an alkaline pH (8–9) promotes the dispersal from the skin.
Abstract: Variable skin pH values are being reported in literature, all in the acidic range but with a broad range from pH 4.0 to 7.0. In a multicentre study (N = 330), we have assessed the skin surface pH of the volar forearm before and after refraining from showering and cosmetic product application for 24 h. The average pH dropped from 5.12 +/- 0.56 to 4.93 +/- 0.45. On the basis of this pH drop, it is estimated that the 'natural' skin surface pH is on average 4.7, i.e. below 5. This is in line with existing literature, where a relatively large number of reports (c. 50%) actually describes pH values below 5.0; this is in contrast to the general assumption, that skin surface pH is on average between 5.0 and 6.0. Not only prior use of cosmetic products, especially soaps, have profound influence on skin surface pH, but the use of plain tap water, in Europe with a pH value generally around 8.0, will increase skin pH up to 6 h after application before returning to its 'natural' value of on average below 5.0. It is demonstrated that skin with pH values below 5.0 is in a better condition than skin with pH values above 5.0, as shown by measuring the biophysical parameters of barrier function, moisturization and scaling. The effect of pH on adhesion of resident skin microflora was also assessed; an acid skin pH (4-4.5) keeps the resident bacterial flora attached to the skin, whereas an alkaline pH (8-9) promotes the dispersal from the skin.

630 citations

Journal ArticleDOI
TL;DR: Better understanding of both the intrinsic and extrinsic influences on the ageing of the skin, as well as distinguishing the retractable aspects of cutaneous ageing from the irretractable, is crucial to this endeavour.
Abstract: As the proportion of the ageing population in industrialized countries continues to increase, the dermatological concerns of the aged grow in medical importance. Intrinsic structural changes occur as a natural consequence of ageing and are genetically determined. The rate of ageing is significantly different among different populations, as well as among different anatomical sites even within a single individual. The intrinsic rate of skin ageing in any individual can also be dramatically influenced by personal and environmental factors, particularly the amount of exposure to ultraviolet light. Photodamage, which considerably accelerates the visible ageing of skin, also greatly increases the risk of cutaneous neoplasms. As the population ages, dermatological focus must shift from ameliorating the cosmetic consequences of skin ageing to decreasing the genuine morbidity associated with problems of the ageing skin. A better understanding of both the intrinsic and extrinsic influences on the ageing of the skin, as well as distinguishing the retractable aspects of cutaneous ageing (primarily hormonal and lifestyle influences) from the irretractable (primarily intrinsic ageing), is crucial to this endeavour.

592 citations

Journal ArticleDOI
S. Pillai1, C. Oresajo1, J. Hayward1
TL;DR: In short, UV irradiation initiates and activates a complex cascade of biochemical reactions in human skin, which causes inflammation and free radical generation (both reactive oxygen and nitrogen species), and strategies to prevent photodamage caused by this cascade of reactions initiated by UV include prevention of UV penetration into skin by physical and chemical sunscreens.
Abstract: Inflammation and the resulting accumulation of reactive oxygen species (ROS) play an important role in the intrinsic and photoaging of human skin in vivo. Environmental insults such as ultraviolet (UV) rays from sun, cigarette smoke exposure and pollutants, and the natural process of aging contribute to the generation of free radicals and ROS that stimulate the inflammatory process in the skin. UV irradiation initiates and activates a complex cascade of biochemical reactions in human skin. In short, UV causes depletion of cellular antioxidants and antioxidant enzymes (SOD, catalase), initiates DNA damage leading to the formation of thymidine dimmers, activates the neuroendocrine system leading to immunosuppression and release of neuroendocrine mediators, and causes increased synthesis and release of pro-inflammatory mediators from a variety of skin cells. The pro-inflammatory mediators increase the permeability of capillaries leading to infiltration and activation of neutrophils and other phagocytic cells into the skin. The net result of all these effects is inflammation and free radical generation (both reactive oxygen and nitrogen species). Furthermore, elastsases and other proteases (cathepsin G) released from neutrophils cause further inflammation, and activation of matrix metalloproteases. The inflammation further activates the transcription of various matrixes degrading metalloproteases, leading to abnormal matrix degradation and accumulation of non-functional matrix components. In addition, the inflammation and ROS cause oxidative damage to cellular proteins, lipids and carbohydrates, which accumulates in the dermal and epidermal compartments, contributing to the aetiology of photoaging. Strategies to prevent photodamage caused by this cascade of reactions initiated by UV include: prevention of UV penetration into skin by physical and chemical sunscreens, prevention/reduction of inflammation using anti-inflammatory compounds (e.g. cyclooxygenase inhibitors, inhibitors of cytokine generation); scavenging and quenching of ROS by antioxidants; inhibition of neutrophil elastase activity to prevent extracellular matrix damage and activation of matrix metalloproteases (MMPs), and inhibition of MMP expression (e.g. by retinoids) and activity (e.g. by natural and synthetic inhibitors).

549 citations

Journal ArticleDOI
TL;DR: Changes in skin biophysical properties with age demonstrate that the more darkly pigmented subjects retaining younger skin properties compared with the more lightly pigmented groups, however, despite having a more compact stratum corneum there are conflicting reports on barrier function in these subjects.
Abstract: People of skin of colour comprise the majority of the world's population and Asian subjects comprise more than half of the total population of the earth. Even so, the literature on the characteristics of the subjects with skin of colour is limited. Several groups over the past decades have attempted to decipher the underlying differences in skin structure and function in different ethnic skin types. However, most of these studies have been of small scale and in some studies interindividual differences in skin quality overwhelm any racial differences. There has been a recent call for more studies to address genetic together with phenotypic differences among different racial groups and in this respect several large-scale studies have been conducted recently. The most obvious ethnic skin difference relates to skin colour which is dominated by the presence of melanin. The photoprotection derived from this polymer influences the rate of the skin aging changes between the different racial groups. However, all racial groups are eventually subjected to the photoaging process. Generally Caucasians have an earlier onset and greater skin wrinkling and sagging signs than other skin types and in general increased pigmentary problems are seen in skin of colour although one large study reported that East Asians living in the U.S.A. had the least pigment spots. Induction of a hyperpigmentary response is thought to be through signaling by the protease-activated receptor-2 which together with its activating protease is increased in the epidermis of subjects with skin of colour. Changes in skin biophysical properties with age demonstrate that the more darkly pigmented subjects retaining younger skin properties compared with the more lightly pigmented groups. However, despite having a more compact stratum corneum (SC) there are conflicting reports on barrier function in these subjects. Nevertheless, upon a chemical or mechanical challenge the SC barrier function is reported to be stronger in subjects with darker skin despite having the reported lowest ceramide levels. One has to remember that barrier function relates to the total architecture of the SC and not just its lipid levels. Asian skin is reported to possess a similar basal transepidermal water loss (TEWL) to Caucasian skin and similar ceramide levels but upon mechanical challenge it has the weakest barrier function. Differences in intercellular cohesion are obviously apparent. In contrast reduced SC natural moisturizing factor levels have been reported compared with Caucasian and African American skin. These differences will contribute to differences in desquamation but few data are available. One recent study has shown reduced epidermal Cathepsin L2 levels in darker skin types which if also occurs in the SC could contribute to the known skin ashing problems these subjects experience. In very general terms as the desquamatory enzymes are extruded with the lamellar granules subjects with lowered SC lipid levels are expected to have lowered desquamatory enzyme levels. Increased pores size, sebum secretion and skin surface microflora occur in Negroid subjects. Equally increased mast cell granule size occurs in these subjects. The frequency of skin sensitivity is quite similar across different racial groups but the stimuli for its induction shows subtle differences. Nevertheless, several studies indicate that Asian skin maybe more sensitive to exogenous chemicals probably due to a thinner SC and higher eccrine gland density. In conclusion, we know more of the biophysical and somatosensory characteristics of ethnic skin types but clearly, there is still more to learn and especially about the inherent underlying biological differences in ethnic skin types.

289 citations

Journal ArticleDOI
TL;DR: An overview of commonly used skin‐whitening ingredients that are commercialized is presented, and hypothesize on other mechanisms that could be important targets to control skin pigmentation such as for example regulation of the adrenergic and glutaminergic signalling and also control of tetrahydrobiopterins in the human skin.
Abstract: Skin-lightening products are commercially available for cosmetic purposes to obtain lighter skin complexion. Clinically, they are also used for treatment of hyperpigmentary disorders such as melasma, cafe au lait spot and solar lentigo. All of these target naturally melanin production, and many of the commonly used agents are known as competitive inhibitors of tyrosinase, one of the key enzymes in melanogenesis. In this review, we present an overview of commonly used skin-whitening ingredients that are commercialized, but we also hypothesize on other mechanisms that could be important targets to control skin pigmentation such as for example regulation of the adrenergic and glutaminergic signalling and also control of tetrahydrobiopterins in the human skin.

287 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202346
202278
202177
202070
201968
201869