scispace - formally typeset
Search or ask a question
JournalISSN: 1598-9429

Journal of Animal Science and Technology 

Korean Society of Animal Sciences and Technology
About: Journal of Animal Science and Technology is an academic journal published by Korean Society of Animal Sciences and Technology. The journal publishes majorly in the area(s): Biology & Medicine. It has an ISSN identifier of 1598-9429. It is also open access. Over the lifetime, 1626 publications have been published receiving 7799 citations. The journal is also known as: Journal of animal science and technology & JAST.


Papers
More filters
Journal ArticleDOI
TL;DR: The replacement of traditional growth promoters in experiments with broilers yielded benefits in all aspects of the meat production chain, such as improvements in productive performance and carcass and meat quality.
Abstract: Growth promoters have been widely used as a strategy to improve productivity, and great benefits have been observed throughout the meat production chain. However, the prohibition of growth promoters in several countries, as well as consumer rejection, has led industry and the academy to search for alternatives. For decades, the inclusion of phytochemicals in animal feed has been proposed as a replacement for traditional growth promoters. However, there are many concerns about the application of phytochemicals and their impact on the various links in the meat production chain (productive performance, carcass and meat quality). Therefore, the effects of these feed additives are reviewed in this article, along with their potential safety and consumer benefits, to understand the current state of their use. In summary, the replacement of traditional growth promoters in experiments with broilers yielded benefits in all aspects of the meat production chain, such as improvements in productive performance and carcass and meat quality. Although the effects in pigs have been similar to those observed in broilers, fewer studies have been carried out in pigs, and there is a need to define the types of phytochemicals to be used and the appropriate stages for adding such compounds. In regard to ruminant diets, few studies have been conducted, and their results have been inconclusive. Therefore, it is necessary to propose more in vivo studies to determine other strategies for phytochemical inclusion in the production phases and to select the appropriate types of compounds. It is also necessary to define the variables that will best elucidate the mechanism(s) of action that will enable the future replacement of synthetic growth promoters with phytochemical feed additives.

146 citations

Journal ArticleDOI
TL;DR: The salient features, evolution, biogenesis and biological importance of the lncRNAs play a major role in gene regulation, cell differentiation, cancer cell invasion and metastasis and chromatin remodeling in mammals are overview.
Abstract: The central dogma of gene expression propounds that DNA is transcribed to mRNA and finally gets translated into protein. Only 2–3% of the genomic DNA is transcribed to protein-coding mRNA. Interestingly, only a further minuscule part of genomic DNA encodes for long non-coding RNAs (lncRNAs) which are characteristically more than 200 nucleotides long and can be transcribed from both protein-coding (e.g. H19 and TUG1) as well as non-coding DNA by RNA polymerase II. The lncRNAs do not have open reading frames (with some exceptions), 3`-untranslated regions (3’-UTRs) and necessarily these RNAs lack any translation-termination regions, however, these can be spliced, capped and polyadenylated as mRNA molecules. The flexibility of lncRNAs confers them specific 3D-conformations that eventually enable the lncRNAs to interact with proteins, DNA or other RNA molecules via base pairing or by forming networks. The lncRNAs play a major role in gene regulation, cell differentiation, cancer cell invasion and metastasis and chromatin remodeling. Deregulation of lncRNA is also responsible for numerous diseases in mammals. Various studies have revealed their significance as biomarkers for prognosis and diagnosis of cancer. The aim of this review is to overview the salient features, evolution, biogenesis and biological importance of these molecules in the mammalian system.

139 citations

Journal ArticleDOI
TL;DR: After the initial isolation of the appropriate culture medium, the probiotics must meet important qualifications, including being non-pathogenic acid and bile-tolerant strains that possess the ability to act against pathogens in the gastrointestinal tract and the safety-enhancing property of not being able to transfer any antibiotic resistance genes to other bacteria.
Abstract: The use of probiotics for human and animal health is continuously increasing. The probiotics used in humans commonly come from dairy foods, whereas the sources of probiotics used in animals are often the animals’ own digestive tracts. Increasingly, probiotics from sources other than milk products are being selected for use in people who are lactose intolerant. These sources are non-dairy fermented foods and beverages, non-dairy and non-fermented foods such as fresh fruits and vegetables, feces of breast-fed infants and human breast milk. The probiotics that are used in both humans and animals are selected in stages; after the initial isolation of the appropriate culture medium, the probiotics must meet important qualifications, including being non-pathogenic acid and bile-tolerant strains that possess the ability to act against pathogens in the gastrointestinal tract and the safety-enhancing property of not being able to transfer any antibiotic resistance genes to other bacteria. The final stages of selection involve the accurate identification of the probiotic species.

131 citations

Journal ArticleDOI
TL;DR: With the current advance technology, lab-grown meat with no livestock raising or known as cultured meat will be expected to boost the food market in the future and insect-based products will be promising to be the next protein resource for human food.
Abstract: The definition of meat analog refers to the replacement of the main ingredient with other than meat. It also called a meat substitute, meat alternatives, fake or mock meat, and imitation meat. The increased importance of meat analog in the current trend is due to the health awareness among consumers in their diet and for a better future environment. The factors that lead to this shift is due to low fat and calorie foods intake, flexitarians, animal disease, natural resources depletion, and to reduce greenhouse gas emission. Currently, available marketed meat analog products are plant-based meat in which the quality (i.e., texture and taste) are similar to the conventional meat. The ingredients used are mainly soy proteins with novel ingredients added, such as mycoprotein and soy leghemoglobin. However, plant-based meat is sold primarily in Western countries. Asian countries also will become a potential market in the near future due to growing interest in this product. With the current advance technology, lab-grown meat with no livestock raising or known as cultured meat will be expected to boost the food market in the future. Also, insect-based products will be promising to be the next protein resource for human food. Nevertheless, other than acceptability, cost-effective, reliable production, and consistent quality towards those products, product safety is the top priority. Therefore, the regulatory frameworks need to be developed alongside.

130 citations

Journal ArticleDOI
TL;DR: The aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation and shows that changing fermentation pattern is one of the most effective ways of methane abatement.
Abstract: Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations. However, a comprehensive exploration for a sustainable methane mitigation approach is still lacking. Dietary modification is directly linked to changes in the rumen fermentation pattern and types of end products. Studies showed that changing fermentation pattern is one of the most effective ways of methane abatement. Desirable dietary changes provide two fold benefits i.e. improve production and reduce GHG emissions. Therefore, the aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation.

129 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202370
2022137
2021100
202093
201946
201831