scispace - formally typeset
Search or ask a question
JournalISSN: 0094-8373

Paleobiology 

Paleontological Society
About: Paleobiology is an academic journal published by Paleontological Society. The journal publishes majorly in the area(s): Extinction & Extinction event. It has an ISSN identifier of 0094-8373. Over the lifetime, 3448 publications have been published receiving 142028 citations. The journal is also known as: palaeobiology & geobiology.


Papers
More filters
Journal ArticleDOI
TL;DR: This work presents several examples of exaptation, indicating where a failure to concep- tualize such an idea limited the range of hypotheses previously available, and proposes a terminological solution to the problem of preadaptation.
Abstract: Adaptation has been defined and recognized by two different criteria: historical genesis (fea- tures built by natural selection for their present role) and current utility (features now enhancing fitness no matter how they arose). Biologists have often failed to recognize the potential confusion between these different definitions because we have tended to view natural selection as so dominant among evolutionary mechanisms that historical process and current product become one. Yet if many features of organisms are non-adapted, but available for useful cooptation in descendants, then an important concept has no name in our lexicon (and unnamed ideas generally remain unconsidered): features that now enhance fitness but were not built by natural selection for their current role. We propose that such features be called exaptations and that adaptation be restricted, as Darwin suggested, to features built by selection for their current role. We present several examples of exaptation, indicating where a failure to concep- tualize such an idea limited the range of hypotheses previously available. We explore several consequences of exaptation and propose a terminological solution to the problem of preadaptation.

3,996 citations

Journal ArticleDOI
TL;DR: It is argued that virtually none of the examples brought forward to refute the model of punctuated equilibria can stand as support for phyletic gradualism; many are so weak and ambiguous that they only reflect the persistent bias for gradualism still deeply embedded in paleontological thought.
Abstract: We believe that punctuational change dominates the history of life: evolution is concentrated in very rapid events of speciation (geologically instantaneous, even if tolerably continuous in ecological time). Most species, during their geological history, either do not change in any appreciable way, or else they fluctuate mildly in morphology, with no apparent direction. Phyletic gradualism is very rare and too slow, in any case, to produce the major events of evolution. Evolutionary trends are not the product of slow, directional transformation within lineages; they represent the differential success of certain species within a clade—speciation may be random with respect to the direction of a trend (Wright's rule).As an a priori bias, phyletic gradualism has precluded any fair assessment of evolutionary tempos and modes. It could not be refuted by empirical catalogues constructed in its light because it excluded contrary information as the artificial result of an imperfect fossil record. With the model of punctuated equilibria, an unbiased distribution of evolutionary tempos can be established by treating stasis as data and by recording the pattern of change for all species in an assemblage. This distribution of tempos can lead to strong inferences about modes. If, as we predict, the punctuational tempo is prevalent, then speciation—not phyletic evolution—must be the dominant mode of evolution.We argue that virtually none of the examples brought forward to refute our model can stand as support for phyletic gradualism; many are so weak and ambiguous that they only reflect the persistent bias for gradualism still deeply embedded in paleontological thought. Of the few stronger cases, we concentrate on Gingerich's data for Hyopsodus and argue that it provides an excellent example of species selection under our model. We then review the data of several studies that have supported our model since we published it five years ago. The record of human evolution seems to provide a particularly good example: no gradualism has been detected within any hominid taxon, and many are long-ranging; the trend to larger brains arises from differential success of essentially static taxa. The data of molecular genetics support our assumption that large genetic changes often accompany the process of speciation.Phyletic gradualism was an a priori assertion from the start—it was never “seen” in the rocks; it expressed the cultural and political biases of 19th century liberalism. Huxley advised Darwin to eschew it as an “unnecessary difficulty.” We think that it has now become an empirical fallacy. A punctuational view of change may have wide validity at all levels of evolutionary processes. At the very least, it deserves consideration as an alternate way of interpreting the history of life.

2,278 citations

Journal ArticleDOI
TL;DR: In this paper, a categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of the weathering rates and processes of recent mammals in the Amboseli Basin.
Abstract: Bones of recent mammals in the Amboseli Basin, southern Kenya, exhibit distinctive weathering characteristics that can be related to the time since death and to the local conditions of temperature, humidity and soil chemistry. A categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of weathering rates and processes. The time necessary to achieve each successive weathering stage has been calibrated using known-age carcasses. Most bones decompose beyond recognition in 10 to 15 yr. Bones of animals under 100 kg and juveniles appear to weather more rapidly than bones of large animals or adults. Small-scale rather than widespread environmental factors seem to have greatest influence on weathering characteristics and rates. Bone weathering is potentially valuable as evidence for the period of time represented in recent or fossil bone assemblages, in- cluding those on archeological sites, and may also be an important tool in censusing populations of animals in modern ecosystems.

1,994 citations

Journal ArticleDOI
TL;DR: A quantitative method for describing how heterochronic changes in ontogeny relate to phyletic trends is presented, and a greatly simplified and logical scheme of classification is obtained that will be particularly useful in studying the data of paleontology and comparative morphology.
Abstract: We present a quantitative method for describing how heterochronic changes in ontogeny relate to phyletic trends. This is a step towards creating a unified view of developmental biology and evolu- tionary ecology in the study of morphological evolution. Using this representation, we obtain a greatly simplified and logical scheme of classification. We believe that this scheme will be particularly useful in studying the data of paleontology and comparative morphology and in the analysis of processes leading to adaptive radiation. We illustrate this scheme by examples drawn from the literature and our own work.

1,428 citations

Journal ArticleDOI
TL;DR: The substantial increase of snail-shell sturdiness beginning in the Early Cretaceous has accompanied, and was perhaps in response to, the evolution of powerful, relatively small, shell-destroying predators such as teleosts, stomatopods, and decapod crustaceans.
Abstract: Tertiary and Recent marine gastropods include in their ranks a complement of mechanically sturdy forms unknown in earlier epochs. Open coiling, planispiral coiling, and umbilici detract from shell sturdiness, and were commoner among Paleozoic and Early Meso- zoic gastropods than among younger forms. Strong external sculpture, narrow elongate aper- tures, and apertural dentition promote resistance to crushing predation and are primarily as- sociated with post-Jurassic mesogastropods, neogastropods, and neritaceans. The ability to remodel the interior of the shell, developed primarily in gastropods with a non-nacreous shell structure, has contributed greatly to the acquisition of these antipredatory features. The substantial increase of snail-shell sturdiness beginning in the Early Cretaceous has accompanied, and was perhaps in response to, the evolution of powerful, relatively small, shell-destroying predators such as teleosts, stomatopods, and decapod crustaceans. A simul- taneous intensification of grazing, also involving skeletal destruction, brought with it other fundamental changes in benthic community structure in the Late Mesozoic, including a trend toward infaunalization and the disappearance or environmental restriction of sessile animals which cannot reattach once they are dislodged. The rise and diversification of angiosperms and the animals dependent on them for food coincides with these and other Mesozoic events in the marine benthos and plankton. The new predators and prey which evolved in conjunction with the Mesozoic reorganiza- tion persisted through episodes of extinction and biological crisis. Possibly, continental breakup and the wide extent of climatic belts during the Late Mesozoic contributed to the conditions favorable to the evolution of skeleton-destroying consumers. This tendency may have been exaggerated by an increase in shelled food supply resulting from the occupation of new adaptive zones by infaunal bivalves and by shell-inhabiting hermit crabs. Marine communities have not remained in equilibrium over their entire geological history. Biotic revolutions made certain modes of life obsolete and resulted in other adaptive zones becoming newly occupied.

923 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202328
202241
202156
202051
201958
201859