scispace - formally typeset
Open AccessJournal ArticleDOI

Problems at resonance for first and second order differential equations via Lyapunov-like functions

Reads0
Chats0
About
This article is published in Nonlinear Analysis-theory Methods & Applications.The article was published on 1983-01-01 and is currently open access. It has received 3 citations till now. The article focuses on the topics: Lyapunov function & Stochastic partial differential equation.

read more

Content maybe subject to copyright    Report

Pn0BI,EUS Ar nEgONAtICE
FoR
81ffiT
Al{D
SECOIiID
OnDEn
DlF-
FERnNtlAl EqUAtrOAs
WA
LTAPUNOV-LIKE
rwcTr0Ns
by
J. J.
Nleto*
Dtperttcnt
of
ll,athenatlce
fhc UnLverrtty
of
Texee
at
Atllngotn
Atllngton,
Te:€l
76019
Technl.eal
RePott
#181
Apttl'
1981
rf,csearch
petttrlly
aupportcd
by
u.
9.
Arny
Rcrserch
Grent
#DaAG29-80-C-0060.

1,
INT&ODUCITON
Recently
[7r8r10]
an attempt
{g made
6uec€saful1y
to
coobtnt
thr
tttu
baalc
technlqueg
nanely,
Lyapunov-Sehtuldt
nethod
ard
the
ncthod
of
uppet
end loser
golutlonel
to Lnvaatlgete
the
exlatence
of
perlodlc
aolutlonr
of
dlfferentlal
equatLone.
when
t{e
wlgh to
extend
such
regulta
fot
8y3t€ml
of dtfferentlal
equettone there
are
ttro
poeaLbLlltles
to
follor.
One
ls
to
generellze
the
ft€thod of upper
and lower
solutlons
ueing
a sultebl€
Gotl€1
and the other
le to utlll.ae
the
concept
of
Lyepunov-llke
functlons
6nd
ths
theory
of
dlffetentlal
Lnequalltlec.
In
the
pepef,r
ve
rhal1
dlscusl
the
ex-
Lstelee of
ptoblems
et r€aonence
fot
f{rst and
recond
order
dlffetentiel
By6ten6
by the
aecond
approach
develop{ng
neccseary
theory
of
dlffetcntlrl
{nequalltles
fot
problemr
et fesonance.
2, AlT
ASSMACT
EXISTEHCE RESI'LT
Let
E be
a real
Htlbert
Space.
Consldet
the
ncnllnotr
oPcretot
equetlon
(2.1)
Lu-Nu
rhere
L: D(t)CE-tE
lsallneaf
opef,atotsnd
Nl
D(lt)CE'--+B
t
nonllneer.
operator wlth O(t)
n
D(H)
f t.
Let EO
.
N(t) be ruch
thet
dln
Eo
<
-
and E - E0
(E
91.
Furthermorer
ile
aesune
thet
Et
lr elro
the
range of
L.
$uppose
thet
P;
E
-t
E0 le
the
ldeupotent
ptoJectlon
opare-
tor and Ht
El
-t
E1
the conpact
tnvefse
of L
on 61.
then 1t
le re1l
knorn
[31
that
the
problen
(2.1]
{a
equlvalent
to the
coupled
eyatetn of
opeta-
tof,
equstlonE
(2,2)
ut
.
H(I-P)l[(uOtut)

(2,tj
0
-
FN(uO+ur)
ConcernLng
the
problern
(2.1),
t*e
have
the
following
reeult
Ile_orem
2.1:
Suppoae that
(r)
i$ul
<
Jo
for
all
u
D(N)
({t;
There
exl.sts
t'r
R0
>
0
auch that
(N(uo+ut)ru')
I
0
(or <
0) $henever
luol
-
.snd
flurfl
- r'r where
t0
*
E0
and ul
*
81.
?hen
the
problern
(2.1)
edrnlts
et
Leaet one
solution'
3.
COWARTSOfi
PRIfiEIPLES
Gtven
s
E
cfto,rnt
,.
*,*]
and
v
cfto,tnt,
xr]
the
functlon
S(tru)
ls
s
modlfled
functlon
relatlve
to
(3.1)
E(trtr)
-
g{trp(tru)1
.r
[Gr-d-u
l+u2
'
r-
rr
s€cllo,znl*n
xIRr
we deflne
,
p(r,u)
,u')
*
g[(+ll.
t*u-
[41.
Ro
r
lf€
vr
lf
eay
that
.]
s(t
Thle
funct{on
rltll be called
the modlftcetlon
of
g(trurut}
telatlve
to
'rrr
Here,
ln
(3'1)
and
(3.2), p(t,u)
o
maxtv(t)ru]"
. Let
us conetder
the
petlodlc
boundaty
value
problem
(PBVP
fot
short)
'
(3.2i
(3.3)
E(trurur
)
-
ut
-
g(tru)
t'le
have
the
following
comparlgon
u(0)
- u(2t).
resultg:

3l,eorg$_3ri.
il)
r-m(ti
r
o
{:
C
[
[Or:i''r
l,
L--
Let
g€
-
l-Lnr
sup
h+0"
-T
ni
and
I
-i
r
I and
assume
that
rljo,?nl
x
fr,
Rl
MIi*Itt
J
e(t,m(t))
ror at1
I
(0,2nJ, where
{
1r}
there
exlate
B
D-8(r)
>
g(r19(
L{!:ggr*e'!il:.1.
l'et
g
holde.
Aleo
*esumel
euch
that
(0r2nl
and
m(U)
!
n(Zn)
r-1
cIIo,2nLIR
i
L-J
t))
fot
s1l-
t
g(0)
>
B(2n)
{fff}
g
16 atrlctly
decreaelng
ln u
The*
ft(t)
<
g{t}
on
[or?nJ.
foreach
ge[0r2nJ.
L,:ggl"
$uppoe*
tlrat
ffi{t)
<
s{ti
otl
[0'2fi1
ie
not
true.
Then
thete
exiete
*
?S
n
[t:r]Tri
end
an e
>
0
euch
ilrst
i3.4)
m(to)
-F(to)+e
and
m(t)
1
B(t)+€,
t€
[0'2n1'
If
N+
iSn?nJ.
we
have
D-mit')
t
U-$(tO)'
Hence'
gitfi,*itoli
?
D-rrr(ts)
>
D-F(to)
:
g(t0'F(to))
an*j
becdtrre
cf
{rr.r}
we
eee
that
B(to)
>
tn(to)
whtch
le
a contradlctlon
to
i3.4)"
Ii:
t0
=
9,
,;e
heve
fcr
sftell
h
>
t),
rn(2n-h)
-
rn(?n)
<
m(24-h)
il{2n*h}
*. c
-
BiQ} -
c
<
S{Zn-h} -
B(?r},
trhtch
lnpltes
D-nr(2rr)
,
i.
ti;+:;r
fol.iaws
t:lrrri
3i1,r)
>
rn{?n),
and
$e
obtal"n B(0)
>
3(2tt)
,,-,'rJ:,rh
agr:1.n
l.a
s cr:ntra<!J'ctian.
Thue,
tde
have
estebllehed
that
**a
[{iu2n].
-
n(o)
.
>
D-g(ztr).
:
m(2*)
>
n(o)
m(t)
<.
B(t)
.[u,
Znl
x
*,
*]
and
eupPose
that
({)
of
Theorem
3'1

-l
(a)
rn(O)
'
m(Zr)
(b)
The
PBVP
(3.3)
hae a
tnaxl"mal
aolutton
r(t)
(c)
For
evefy
lowet
eolutlon
of
(3.3)
v1
the
modlfled
PBI|P
(3.5)
ut
r
S(tpu)
rr(0)
- u(2t)
shere
E
ls
defined
by
(3.1.),
hae
a
golutlcn
$(t).
Then
rtl(t)
<
r(t)
on
[0,2n1
.
Proof.
Let
E
the
modtfled
functlon
relctLve
to
m(t)
snd
leb
u(t)
be
a eolutton
of
the
rnodlfied
pgw
(3'5)
Budranteed
by
(c)'
t{e
ahell
ftrgt
ehow
that
m(t)
<
u(t)
on
[0,2n]
.
\f
thls
fa faloen
then
there
exLetg
a
ennller
e>0
euchthat
m(t)
5
u(t)
*
e,
x
e
[O'Zrtl
Ead
et leaet
one
t0
[0rZnJ
aatlsfylng
t(aO)'u(t')*e'
If
to
c
(0r2nl,
we
have
m(to)
t
u(to)
and
n-rn(to)
t
ut
(t0). on the
other
hand,
tre
herre
ln
vlew
of
the
deftnltlon
of
f
and
p(tlu)
t
(lq'11trt
)
-u.(-:C
0<D-rn(t0)-u'(to}:e(to,m(t0)i.g(tCI'p(t0,u(eo)))-ffi
u(to)
-m(
tn)
"
d1%)"-
<
0
whtch
Le
a
eontradlct{on'
lf'
t0
-
o,
we
obtal'n
D.m(2rr}
>
u'(zn},
and
from
(a),
re
get
p(2rr,u(2n))
*
max(n(Zn),u(2n))
-
nax(m(0),
u(0))
-
m(O)1
and
then

Citations
More filters
Journal ArticleDOI

On the structure of the solution set for first order differential equations

TL;DR: In this article, the authors studied the structure of the solution set for the periodic boundary value problem for first order differential equations and gave conditions under which a solution set is compact, connected, or acyclic.
Journal ArticleDOI

Comparison results for first and second order boundary value problems at resonance

TL;DR: In this article, various types of comparison results for first and second order periodic boundary value problems are developed, and it is hoped that these comparison results play an important role in the existence theory of boundary value problem at resonance.
Journal ArticleDOI

Comparison results for parabolic differential equations at resonance

TL;DR: In this paper, the authors developed general comparison techniques for semilinear parabolic equations with periodic and homogeneous Neumann boundary conditions, and used them in the existence theory for parabolic boundary value problems at resonance.
References
More filters
Journal ArticleDOI

An abstract existence theorem at resonance

L. Cesari, +1 more
TL;DR: In this article, an extension of Schauder's fixed point theorem for non-selfadjoint Dirichlet nonlinear problems has been presented, where the authors restrict themselves to the self-adjoint case.
Journal ArticleDOI

Periodic solutions of nonlinear boundary value problems

TL;DR: In this article, the authors combine alternative methods and the method of differential inequalities to discuss nonlinear boundary value problems at resonance, and the results for systems are given in a general way so as to include known results and also offer new directions.
Related Papers (5)