scispace - formally typeset
Open AccessPosted Content

Visualizing and Understanding Convolutional Neural Networks

TLDR
In this paper, a novel visualization technique was introduced to give insight into the function of intermediate feature layers and the operation of the classifier, which enabled the authors to find model architectures that outperformed Krizhevsky et al. on ImageNet classification benchmark.
Abstract
Large Convolutional Neural Network models have recently demonstrated impressive classification performance on the ImageNet benchmark \cite{Kriz12}. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we address both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. We also perform an ablation study to discover the performance contribution from different model layers. This enables us to find model architectures that outperform Krizhevsky \etal on the ImageNet classification benchmark. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets.

read more

Citations
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Posted Content

Deep Residual Learning for Image Recognition

TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Journal ArticleDOI

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Posted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Proceedings Article

Faster R-CNN: towards real-time object detection with region proposal networks

TL;DR: Ren et al. as discussed by the authors proposed a region proposal network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals.
Related Papers (5)