scispace - formally typeset
Search or ask a question

Showing papers on "Atom interferometer published in 1981"


Book ChapterDOI
01 Jan 1981
TL;DR: In this paper, the authors proposed a method of using widely separated and nearly free test masses, and monitor changes in their separation by optical interferometry techniques, which shows considerable promise for both high sensitivity and wide bandwidth and frequency coverage.
Abstract: Most of the techniques being developed for detection of gravitational radiation involve sensing the small strains in space associated with the gravitational waves by looking for changes in the apparent distance between two (or more) test masses. In many of the experimental searches performed so far the detectors consisted of massive aluminium bars, the metal near the ends of the bars acting as the test masses, and impulsive strains induced in the bars were searched for. Thetrain sensitivity of such experiments has been in the range 10−16 to 10−18 for pulses of duration of order 1 millisecond, the limits usually being set by thermal noise in the bar, and transducer and amplifier sensitivity. Current predictions of gravitational waves to be expected from various types of astrophysical sources suggest that strain sensitivities some three orders of magnitude better than these are likely to be required for detection of gravitational wave bursts from known types of sources at a useful rate, although indecd signals may be present over a wide frequency range — from 10 kHz to 10−4 Hz or lower. (A good summary is given in the proceedings of a conference on “Sources of Gravitational Radiation” [1]). Work on bar gravity wave detectors is continuing; but an alternative approach is to use widely separated and nearly free test masses, and monitor changes in their separation by optical interferometry techniques. This method shows considerable promise for both high sensitivity and wide bandwidth and frequency coverage. At the sensitivity levels required absolute length measurements would be difficult, but a comparison of two baselines perpendicular to one another, which may be affected in opposite senses by a gravitational wave travelling in a suitable direction, provides a practical alternative. Early experiments of this type were carried out at Hughes Laboratories [2] using a simple Michelson interferometer to monitor separations between ree test masses suspended in vacuum. The displace- ment sensitivity of such an arrangement may be improved by causing the light in each arm of the interferometer to travel back and forth many times between mirrors attached to the test masses, and a multireflection system of this type using Herriott delay lines was proposed by R. Weiss [3]. Experimental work on multireflection Michelson interferometers for gravity wave detection has been carried out at MIT, the Max-Planck Institute at Munich, and the University of Glasgow.

19 citations


05 Apr 1981
TL;DR: In this article, a neutron interferometer using diffraction gratings is described, and an optimization of the interferometers increases its luminosity by a factor of more than 30.
Abstract: A neutron interferometer using diffraction gratings is described. An optimization of the interferometer increases its luminosity by a factor of more than 30. Estimates show that this interferometer could be used in experiments in medium-flux reactors.

2 citations