scispace - formally typeset
Search or ask a question

Showing papers on "Boswellia sacra published in 2016"


Journal ArticleDOI
30 Jun 2016-PLOS ONE
TL;DR: It is concluded that endophytic microbial resources producing extracellular enzymes and auxin could establish a unique niche for ecological adaptation during symbiosis with the host Frankincense tree.
Abstract: Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could establish a unique niche for ecological adaptation during symbiosis with the host Frankincense tree.

117 citations


Journal ArticleDOI
TL;DR: The results show that any claim of BAs content in either B. sacra or B. serrata gum resins equal to or higher than 70% or AKBA contents of 30% are simply unrealistic or based on a wrong quantitative determination.
Abstract: Boswellia serrata and Boswellia sacra (syn. B. carteri) are important medicinal plants widely used for their content of bioactive lipophilic triterpenes. The qualitative and quantitative determination of boswellic acids (BAs) is important for their use in dietary supplements aimed to provide a support for osteoarthritic and inflammatory diseases. We used High Performance Liquid Chromatography (HPLC)-Diode Array Detector (DAD) coupled to ElectroSpray Ionization and tandem Mass Spectrometry (ESI-MS/MS) for the qualitative and quantitative determination of BAs extracted from the gum resins of B. sacra and B. serrata. Limit of detection (LOD), limit of quantification (LOQ), and Matrix Effect were assessed in order to validate quantitative data. Here we show that the BAs quantitative determination was 491.20 g·kg−1 d. wt (49%) in B. sacra and 295.25 g·kg−1 d. wt (30%) in B. serrata. Lower percentages of BAs content were obtained when BAs were expressed on the gum resin weight (29% and 16% for B. sacra and B. serrata, respectively). The content of Acetyl-11-Keto-β-Boswellic Acid (AKBA) was higher in B. sacra (70.81 g·kg−1 d. wt; 7%) than in B. serrata (7.35 g·kg−1 d. wt; 0.7%). Our results show that any claim of BAs content in either B. sacra or B. serrata gum resins equal to or higher than 70% or AKBA contents of 30% are simply unrealistic or based on a wrong quantitative determination.

39 citations


Journal ArticleDOI
TL;DR: In a previous study, two highly potent yet unidentified odorants were detected that were present at trace levels in the volatile fraction of Boswellia sacra gum resin and were identified as rotundone and mustakone.
Abstract: In a previous study, two highly potent yet unidentified odorants were detected that were present at trace levels in the volatile fraction of Boswellia sacra gum resin. These two compounds were isolated semipreparatively from the volatile oil by a sensory-guided fractionation process involving microscale bulb-to-bulb distillation, countercurrent chromatography, and preparative gas chromatography. In this manner, the two oxygenated sesquiterpenes could be identified as rotundone (1) and mustakone (2). Compound 2 is described for the first time as a potent odorant with a very low odor threshold.

30 citations


Journal ArticleDOI
TL;DR: Boswellia sacra water extract has proulcerogenic activity due to its gastric hypersecretory effect as well as other phytoconstituents used in the treatment of gastric and hepatic disorders in the Arab countries.
Abstract: Context: The water extract of Boswellia sacra Flueck. (Burseraceae) is used in the treatment of gastric and hepatic disorders in the Arab countries.Objective: The effect of Boswellia sacra water extract on gastric secretion and experimentally induced gastric ulcers in rats was studied.Materials and methods: Acetic acid-induced chronic gastric ulcers, pylorus ligation, aspirin-induced, ethanol-induced, and restraint plus cold stress-induced gastric ulcer models were employed. The effect on normal rats was also studied. The water extract of B. sacra was administered orally at doses of 2 and 5 ml/kg once daily ranging from single dose to 30 d treatment depending on the model. The extract was subjected to GC-MS analysis to determine the presence of various phytoconstituents.Results: Boswellia sacra water extract (5 ml/kg, p.o (per os)) aggravated acetic acid-induced chronic ulcers, wherein an increase in ulcer index (p < 0.01) and ulcer score (p < 0.05) was observed. In pylorus-ligated rats, the extra...

21 citations


Journal ArticleDOI
TL;DR: In summary, this survey reveals that in spite of increased regulations on botanical dietary supplements, the problem of mislabeling still exists and needs to be addressed by the manufacturers, so that consumers get greater confidence in the botanical Dietary supplements they use.
Abstract: In consideration of the increasing popularity of frankincense and the widely published quality problems associated with botanical dietary supplements, a survey was conducted for the first time on the quality of frankincense containing botanical dietary supplements. Six US products representing 78 % of the units sold and 70 % of the market value, and 11 European products representing 30 % of the units sold and 40 % of the market value were tested for their boswellic acid composition profile, label compliance, and claimed health benefits. Special focus was also set on the statements made with regard to the frankincense applied. Only five products out of seventeen disclosed all relevant information for the Boswellia extract, mentioning the species, the part of plant used, and the boswellic acid content. Whereas all products but one claimed to use Boswellia serrata, three products did not mention the resin as the part applied and 10 products did not declare the boswellic acid content. Apart from the different boswellic acid composition determined with a sensitive LC/MS method, 41 % of the products did not comply with the label declaration. Hence, one product from Italy did not contain any of the six characteristic boswellic acids (KBA, AKBA, αBA, βBA, AαBA, AβBA) at all and another US product contained only traces, suggesting the absence of frankincense or the use of Boswellia frereana instead of B. serrata. In another product, the ratios of the individual boswellic acids were different from B. serrata gum resin, indicating the use of another species such as Boswellia sacra or Boswellia carterii. Furthermore, two products revealed different boswellic acid contents from those declared on the label. Further, two products did not declare the use of manipulated Boswellia gum resin extract being enriched in acetyl-11-keto-boswellic acid content reaching up to 66 %. In addition, consumers could be misled by outdated literature or references to in vitro studies performed at dosages that can never be achieved in humans following oral administration. In summary, this survey reveals that in spite of increased regulations on botanical dietary supplements, the problem of mislabeling still exists and needs to be addressed by the manufacturers, so that consumers get greater confidence in the botanical dietary supplements they use.

15 citations