scispace - formally typeset
Search or ask a question

Showing papers by "Abd El-Aziz A. Said published in 2013"


Journal ArticleDOI
TL;DR: In this article, the effects of pH, contact time, initial dye concentrations, adsorbent particle size and adsorbents dose on the adsorption of reactive yellow 2 and reactive blue 4 were investigated.
Abstract: Propionic acid modified bagasse was used for the removal of reactive yellow 2 and reactive blue 4. The effects of pH, contact time, initial dye concentrations, adsorbent particle size and adsorbent dose on the adsorption of the two dyes were investigated. Additionally, the desorption process and intra-particle diffusion were studied. Acidic pH values were favorable for adsorption of both dyes. The equilibrium adsorption data were best fitted with the Freundlich isotherm for reactive yellow 2 and the Langmiur isotherm for reactive blue 4. The values of their corresponding constants were determined. The kinetic for dye adsorption is well described by a pseudo-first order kinetic model for the reactive yellow 2 and by pseudo-second order for the reactive blue 4. The investigation revealed that the hydroxyl groups of bagasse and the carboxylic group of propionic acid play a great role in the removal of both reactive dyes.

24 citations


Journal ArticleDOI
01 Jul 2013
TL;DR: In this article, the use of the low cost, available and renewable biosorbent propionic acid pretreated bagasse for the removal of the textile direct yellow 12 and direct red 81 dyes from aqueous solutions was investigated.
Abstract: This research work involved the use of the low cost, available and renewable biosorbent propionic acid pretreated bagasse for the removal of the textile direct yellow 12 and direct red 81 dyes from aqueous solutions. Batch experiments were carried out for sorption kinetics and isotherms of the two dyes. The studied operating variables include initial pH, contact time, initial dye concentration, adsorbent dose and particle size. Maximum color removal was in acidic medium (pH 2.5-3.5) where a greater percentage removal was observed in this pH range. Equilibrium isotherms were applied using Langmuir and Freundlich models of adsorption and it was found that the Langmuir isotherm was the best model for adsorption of direct yellow 12 whereas the Freundlich model was suitable for adsorption of the direct red 81. The kinetics of adsorption of both dyes was consistent with a pseudo-first order kinetic for the direct yellow 12 and a pseudo-second order for the direct red 81. Desorption of both dyes is greatly dependent on the pH value of the solution with which the bagasse loaded dye in contact. The percent dye removal increases with the pH increase.

10 citations