scispace - formally typeset
Search or ask a question

Showing papers by "Agnieszka Bagniewska-Zadworna published in 2019"


Journal ArticleDOI
TL;DR: Results confirm the occurrence of modest facultative xeromorphism in barley but also emphasize the need to use allometric analysis to uncouple the true plasticity of traits from changes attributable to altered plant and organ size.

18 citations


Journal ArticleDOI
26 Aug 2019-Planta
TL;DR: Evidence is provided in support of the dual role of autophagy in developmental PCD, which is a committed step with the release of hydrolytic enzymes from the vacuole and final digestion of protoplast, from which there is no return once initiated.
Abstract: Autophagy is involved in developmentally programmed cell death and is identified during the early development of phloem, as well as xylem with a dual role, as both an inducer and executioner of cell death. The regulation of primary and secondary development of roots and stems is important for the establishment of root systems and for the overall survival of trees. The molecular and cellular basis of the autophagic processes, which are used at distinct moments during the growth of both organs, is crucial to understand the regulation of their development. To address this, we use Populus trichocarpa seedlings grown in a rhizotron system to examine the autophagy processes involved in root and stem development. To monitor the visual aspects of autophagy, transmission electron microscopy (TEM) and immunolocalization of AuTophaGy-related protein (ATG8) enabled observations of the phenomenon at a structural level. To gain further insight into the autophagy process at the protein and molecular level, we evaluated the expression of ATG gene transcripts and ATG protein levels. Alternations in the expression level of specific ATG genes and localization of ATG8 proteins were observed during the course of root or stem primary and secondary development. Specifically, ATG8 was present in the cells exhibiting autophagy, during the differentiation and early development of xylem and phloem tissues, including both xylary and extraxylary fibers. Ultrastructural observations revealed tonoplast invagination with the formation of autophagic-like bodies. Additionally, the accumulation of autophagosomes was identifiable during the differentiation of xylem in both organs, long before the commencement of cell death. Taken together, these results provide evidence in support of the dual role of autophagy in developmental PCD. A specific role of the controller of cell death, which is a committed step with the release of hydrolytic enzymes from the vacuole and final digestion of protoplast, from which there is no return once initiated, is only attributed to mega-autophagy.

18 citations


Journal ArticleDOI
TL;DR: The occurrence of peroxiredoxins (PRX) as thiol peroxidases and redox regulators indicates an important role of cytosolic 1CysPRX and PRXIIC, mitochondrial PRXIIF, and plastidicPRXIIE, 2Cys PRX, andPRXQ in beech seeds during development and storage.

9 citations


Journal ArticleDOI
11 Oct 2019-Forests
TL;DR: The apical part elongating embryonic axes consisting of the radicles was the most sensitive part of the seed to dehydration, and the root apical meristem area was the first to become inviable, helping to explain the difficulties in beech seedling establishment observed in drought-affected environments.
Abstract: Shortage of water is a limiting factor for the growth and development of plants, particularly at early developmental stages. We focused on the European beech (Fagus sylvatica L.), which produces seeds and further seedlings in large intervals of up to ten years. To explore the beech seedling establishment process, six stages referring to embryo expansion were studied to determine sensitivity to dehydration. The characterization of the response of elongating embryonic axes and cotyledons included a viability test before and after dehydration and measurement of the amounts of electrolyte leakage, concentration, and arrangement of storage materials, changes in chaperone proteins related to water deficit, and accumulation of hydrogen peroxide and superoxide anion radicals. Elongating embryonic axes and cotyledons differed in water content, dehydration rates, membrane permeability before and after dehydration, protein, and lipid decomposition pattern, and amount of 44-kDa dehydrin and 22-kDa small heat shock protein (sHSP). Protruding embryonic axes were more sensitive to dehydration than cotyledons, although dehydration caused transient reinduction of three dehydrin-like proteins and sHSP synthesis, which accompany desiccation tolerance. Extended deterioration, including overproduction of hydrogen peroxide and depletion of superoxide anion radicals, was reported in dehydrated embryonic axes longer than 10 mm characterized by highly elevated cellular leakage. The apical part elongating embryonic axes consisting of the radicles was the most sensitive part of the seed to dehydration, and the root apical meristem area was the first to become inviable. The effects of severe dehydration involving ROS imbalance and reduced viability in beech seedlings with embryonic axes longer than 10 mm might help to explain the difficulties in beech seedling establishment observed in drought-affected environments. The conversion of environmental drought into climate-originated oxidative stress affecting beech seedling performance is discussed in this report.

7 citations


Journal ArticleDOI
TL;DR: The present study provides a detailed comparative description of the changes that occur in genes transcription and the biosynthesis of cell-wall-related compounds during xylogenesis in Populus trichocarpa pioneer roots and stems, and clearly reveals the great complexity of molecular mechanisms underlying cell wall formation and modification during xYLogenesis in different plant organs.
Abstract: Regulation of gene expression, as determined by the genetics of the tree species, is a major factor in determining wood quality. Therefore, the identification of genes that play a role in xylogenesis is extremely important for understanding the mechanisms shaping the plant phenotype. Efforts to develop new varieties characterized by higher yield and better wood quality will greatly benefit from recognizing and understanding the complex transcriptional network underlying wood development. The present study provides a detailed comparative description of the changes that occur in genes transcription and the biosynthesis of cell-wall-related compounds during xylogenesis in Populus trichocarpa pioneer roots and stems. Even though results of microarray analysis indicated that only approximately 10% of the differentially expressed genes were common to both organs, many fundamental mechanisms were similar; e.g. the pattern of expression of genes involved in the biosynthesis of cell wall proteins, polysaccharides, and lignins. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) shows that the composition of monosaccharides was also very similar, with an increasing amount of xylose building secondary cell wall hemicellulose and pectins, especially in the stems. While hemicellulose degradation was typical for stems, possibly due to the intensive level of cell wall lignification. Notably, the main component of lignins in roots were guiacyl units, while syringyl units were dominant in stems, where fibers are especially needed for support. Our study is the first comprehensive analysis, at the structural and molecular level, of xylogenesis in under- and aboveground tree parts, and clearly reveals the great complexity of molecular mechanisms underlying cell wall formation and modification during xylogenesis in different plant organs.

7 citations