scispace - formally typeset
Search or ask a question

Showing papers by "Alan R. Giles published in 1994"


Journal ArticleDOI
TL;DR: Since thrombin degrades cartilage in vitro and had been generated in vivo, as inferred by the existence ofThrombin-antithrombin III complexes, intraarticular activation of coagulation may both contribute to the pathology of arthritis and comprise a target for therapy and diagnosis.
Abstract: Because fibrin is commonly observed within arthritic joints, studies were undertaken to determine whether purified coagulation and fibrinolytic proteases degrade cartilage in vitro and to seek evidence for the activation of coagulation in arthritic joints through measurements of the levels of inhibitor-enzyme complexes and several other proteins associated with coagulation and fibrinolysis. The concentrations of 13 plasma proteins and complexes of thrombin and Factor Xa with antithrombin III were measured in synovial fluids recovered at the time of knee replacement surgery. All zymogens necessary to constitute the coagulation cascade were present. Thrombin and the combination of prothrombin plus prothrombinase induced proteoglycan release from both normal and arthritic cartilages. Factor Xa and plasmin induced release from diseased cartilage only, and urokinase, tissue plasminogen activator, and activated protein C were without effect at the levels used. At saturating levels of thrombin (> or = 2.0 microM) 80% of the proteoglycan content of normal cartilage was released within 24 h. Thrombin, which is cationic, reversibly binds cartilage with Kd = 7.0 +/- 1.0 microM and Bmax = 820 +/- 70 ng/mg of human cartilage. Levels of thrombin-antithrombin III complexes in synovial fluids and arthritis were 4-fold higher in osteo (OA) and 43-fold higher in rheumatoid (RA) than in controls (0.98 nM). Factor Xa-antithrombin III complex levels were threefold lower in OA and fivefold higher in RA than in controls (0.24 nM). These elevated levels of enzyme-inhibitor complexes imply a history of activation of coagulation within the joint, especially in RA. Since thrombin degrades cartilage in vitro and had been generated in vivo, as inferred by the existence of thrombin-antithrombin III complexes, intraarticular activation of coagulation may both contribute to the pathology of arthritis and comprise a target for therapy and diagnosis.

56 citations


Journal ArticleDOI
TL;DR: There was a rapid loss of high-molecular-weight multimers of the circulating vWF, with full recovery within 1 hour, and there was increased morphological evidence of metabolic organelle activity associated with replacement of WP bodies, presumably due to de novo synthesis of the basic protomer and its packaging in high-satellite-weight multimeric form in the storage organelles.
Abstract: von Willebrand factor (vWF) is synthesized by endothelial cells and stored in endothelium-specific granules, the Weibel-Palade (WP) bodies. The release of vWF from endothelial cells in vitro in response to secretagogues such as thrombin is considered to result in the loss of WP bodies through the fusion of the WP bodies with the plasma membrane. Biochemical and morphological techniques, including transmission (TEM) and scanning (SEM) electron microscopy, were used to examine the plasma profile of vWF in parallel with morphological alterations in endothelial cells associated with the generation of thrombin in vivo. There was a rapid loss of high-molecular-weight multimers of the circulating vWF, with full recovery within 1 hour. Simultaneously, TEM demonstrated that the endothelial cells lost WP bodies and became severely vacuolated; this was associated with the appearance of craters in the endothelial surface on SEM. Release of stored vWF in WP bodies seemed to follow the fusion of multiple rather than individual WP bodies, with the resulting vacuole fusing and rupturing through the plasmatic membrane. Within 1 hour there was increased morphological evidence of metabolic organelle activity associated with replacement of WP bodies, presumably due to de novo synthesis of the basic protomer and its packaging in high-molecular-weight multimeric form in the storage organelles.

28 citations