scispace - formally typeset
Search or ask a question

Showing papers by "Alfredo Berzal-Herranz published in 2018"


Journal ArticleDOI
TL;DR: The present data show that the CRE promotes a defect in polysome production, and hinders the assembly of the 80S complex, likely through the direct, high affinity recruitment of the 40S ribosomal subunit, which supports a model in which the CRE-mediated inhibition of viral translation is a multifactorial process defined by the establishment of long-range RNA-RNA interactions.
Abstract: The RNA genome of the hepatitis C virus (HCV) encodes a single open reading frame (ORF) containing numerous functional elements. Among these, the cis-acting replication element (CRE) at the 3' end of the viral ORF, has become of increasing interest given its dual role as a viral translation repressor and replication enhancer. Long-range RNA-RNA contacts mediated by the CRE build the structural scaffold required for its proper functioning. The recruitment of different cellular factors, many related to the functioning of the translation machinery, might aid in the CRE-exerted downregulation of viral translation. The present data show that the CRE promotes a defect in polysome production, and hinders the assembly of the 80S complex, likely through the direct, high affinity recruitment of the 40S ribosomal subunit. This interaction involves the highly conserved 5BSL3.1 and 5BSL3.3 domains of the CRE, and is strictly dependent on RNA-protein contacts, particularly with the ribosomal proteins RPSA and RPS29. These observations support a model in which the CRE-mediated inhibition of viral translation is a multifactorial process defined by the establishment of long-range RNA-RNA interactions between the 5' and 3' ends of the viral genome, the sequestration of the 40S subunit by the CRE, and the subsequent stalling of polysome elongation at the 3' end of the ORF, all governed by the highly stable hairpin domains 5BSL3.1 and 5BSL3.3. The present data thus suggest a new managerial role in HCV translation for these 5BSL3.1 and 5BSL3.3 domains.

8 citations


Journal ArticleDOI
TL;DR: The secondary structure of the 5′-end of the MNSV RNA genome is analyzed and two highly conserved nucleotide sequence stretches are identified that are complementary to the apical loop of its 3′-CITE.
Abstract: In eukaryotes, the formation of a 5'-cap and 3'-poly(A) dependent protein-protein bridge is required for translation of its mRNAs. In contrast, several plant virus RNA genomes lack both of these mRNA features, but instead have a 3'-CITE (for cap-independent translation enhancer), a RNA element present in their 3'-untranslated region that recruits translation initiation factors and is able to control its cap-independent translation. For several 3'-CITEs, direct RNA-RNA long-distance interactions based on sequence complementarity between the 5'- and 3'-ends are required for efficient translation, as they bring the translation initiation factors bound to the 3'-CITE to the 5'-end. For the carmovirus melon necrotic spot virus (MNSV), a 3'-CITE has been identified, and the presence of its 5'-end in cis has been shown to be required for its activity. Here, we analyze the secondary structure of the 5'-end of the MNSV RNA genome and identify two highly conserved nucleotide sequence stretches that are complementary to the apical loop of its 3'-CITE. In in vivo cap-independent translation assays with mutant constructs, by disrupting and restoring sequence complementarity, we show that the interaction between the 3'-CITE and at least one complementary sequence in the 5'-end is essential for virus RNA translation, although efficient virus translation and multiplication requires both connections. The complementary sequence stretches are invariant in all MNSV isolates, suggesting that the dual 5'-3' RNA:RNA interactions are required for optimal MNSV cap-independent translation and multiplication.

2 citations