scispace - formally typeset
Search or ask a question

Showing papers in "Scientific Reports in 2018"


Journal ArticleDOI
TL;DR: The in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases were investigated and changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells.
Abstract: Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.

3,514 citations


Journal ArticleDOI
TL;DR: It is suggested that sialylated Galβ(1,3)GalNAc as O-glycan core 1 glycoforms are involved in the influenza A virus life cycle and play a particularly crucial role during infection of HPAI strains.
Abstract: The initial stage of host cell infection by influenza A viruses (IAV) is mediated through interaction of the viral haemagglutinin (HA) with cell surface glycans. The binding requirement of IAVs for Galβ(1,4)Glc/ GlcNAc (lactose/lactosamine) glycans with a terminal α(2,6)-linked (human receptors) or α(2,3)-linked (avian receptors) N-acetylneuraminic residue commonly found on N-glycans, is well-established. However the role and significance of sialylated Galβ(1,3)GalNAc (core 1) epitopes that are typical O-glycoforms in influenza virus pathogenesis remains poorly detailed. Here we report a multidisciplinary study using NMR spectroscopy, virus neutralization assays and molecular modelling, into the potential for IAV to engage sialyl-Galβ(1,3)GalNAc O-glycoforms for cell attachment. H5 containing virus like particles (VLPs) derived from an H5N1 avian IAV strain show a significant involvement of the O-glycan-specific GalNAc residue, coordinated by a EQTKLY motif conserved in highly pathogenic avian influenza (HPAI) strains. Notably, human pandemic H1N1 influenza viruses shift the preference from 'human-like' α(2,6)-linkages in sialylated Galβ(1,4)Glc/GlcNAc fragments to 'avian-like' α(2,3)-linkages in sialylated Galβ(1,3)GalNAc without involvement of the GalNAc residue. Overall, our study suggests that sialylated Galβ(1,3)GalNAc as O-glycan core 1 glycoforms are involved in the influenza A virus life cycle and play a particularly crucial role during infection of HPAI strains.

1,249 citations


Journal ArticleDOI
TL;DR: The 3DEpiLoop algorithm predicts three-dimensional chromatin looping interactions within topologically associating domains (TADs) from one-dimensional epigenomics and transcription factor profiles using the statistical learning.
Abstract: This study aims to understand through statistical learning the basic biophysical mechanisms behind three-dimensional folding of epigenomes. The 3DEpiLoop algorithm predicts three-dimensional chromatin looping interactions within topologically associating domains (TADs) from one-dimensional epigenomics and transcription factor profiles using the statistical learning. The predictions obtained by 3DEpiLoop are highly consistent with the reported experimental interactions. The complex signatures of epigenomic and transcription factors within the physically interacting chromatin regions (anchors) are similar across all genomic scales: genomic domains, chromosomal territories, cell types, and different individuals. We report the most important epigenetic and transcription factor features used for interaction identification either shared, or unique for each of sixteen (16) cell lines. The analysis shows that CTCF interaction anchors are enriched by transcription factors yet deficient in histone modifications, while the opposite is true in the case of RNAP II mediated interactions. The code is available at the repository https://bitbucket.org/4dnucleome/3depiloop .

1,241 citations


Journal ArticleDOI
TL;DR: In this article, a deep learning model based on Gated Recurrent Unit (GRU) is proposed to exploit the missing values and their missing patterns for effective imputation and improving prediction performance.
Abstract: Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provide useful insights for better understanding and utilization of missing values in time series analysis.

1,085 citations


Journal ArticleDOI
TL;DR: An integrated miRNA expression database was set up and prognostic miRNAs identified as potential prognostic biomarkers for HCC were validated and the expression was significantly altered in 102 mi RNAs in tumors compared to normal liver tissues.
Abstract: Multiple studies suggested using different miRNAs as biomarkers for prognosis of hepatocellular carcinoma (HCC). We aimed to assemble a miRNA expression database from independent datasets to enable an independent validation of previously published prognostic biomarkers of HCC. A miRNA expression database was established by searching the TCGA (RNA-seq) and GEO (microarray) repositories to identify miRNA datasets with available expression and clinical data. A PubMed search was performed to identify prognostic miRNAs for HCC. We performed a uni- and multivariate Cox regression analysis to validate the prognostic significance of these miRNAs. The Limma R package was applied to compare the expression of miRNAs between tumor and normal tissues. We uncovered 214 publications containing 223 miRNAs identified as potential prognostic biomarkers for HCC. In the survival analysis, the expression levels of 55 and 84 miRNAs were significantly correlated with overall survival in RNA-seq and gene chip datasets, respectively. The most significant miRNAs were hsa-miR-149, hsa-miR-139, and hsa-miR-3677 in the RNA-seq and hsa-miR-146b-3p, hsa-miR-584, and hsa-miR-31 in the microarray dataset. Of the 223 miRNAs studied, the expression was significantly altered in 102 miRNAs in tumors compared to normal liver tissues. In summary, we set up an integrated miRNA expression database and validated prognostic miRNAs in HCC.

1,013 citations


Journal ArticleDOI
TL;DR: A major ocean plastic accumulation zone formed in subtropical waters between California and Hawaii: The Great Pacific Garbage Patch is characterised and quantified, suggesting that ocean plastic pollution within the GPGP is increasing exponentially and at a faster rate than in surrounding waters.
Abstract: Ocean plastic can persist in sea surface waters, eventually accumulating in remote areas of the world’s oceans. Here we characterise and quantify a major ocean plastic accumulation zone formed in subtropical waters between California and Hawaii: The Great Pacific Garbage Patch (GPGP). Our model, calibrated with data from multi-vessel and aircraft surveys, predicted at least 79 (45–129) thousand tonnes of ocean plastic are floating inside an area of 1.6 million km2; a figure four to sixteen times higher than previously reported. We explain this difference through the use of more robust methods to quantify larger debris. Over three-quarters of the GPGP mass was carried by debris larger than 5 cm and at least 46% was comprised of fishing nets. Microplastics accounted for 8% of the total mass but 94% of the estimated 1.8 (1.1–3.6) trillion pieces floating in the area. Plastic collected during our study has specific characteristics such as small surface-to-volume ratio, indicating that only certain types of debris have the capacity to persist and accumulate at the surface of the GPGP. Finally, our results suggest that ocean plastic pollution within the GPGP is increasing exponentially and at a faster rate than in surrounding waters.

959 citations


Journal ArticleDOI
TL;DR: A random-effects model meta-analysis allows benchmarking of the prevalence of depression during the era when online health information emerged, facilitating future comparisons.
Abstract: The prevalence of depression may be affected by changes in psychiatric practices and the availability of online mental health information in the past two decades. This study aimed to evaluate the aggregate prevalence of depression in communities from different countries between 1994 and 2014 and to explore the variations in prevalence stratified by geographical, methodological and socio-economic factors. A total of 90 studies were identified and met the inclusion criteria (n = 1,112,573 adults) with 68 studies on single point prevalence, 9 studies on one-year prevalence, and 13 studies on lifetime prevalence of depression. A random-effects model meta-analysis that was performed to calculate the aggregate point, one-year and lifetime prevalence of depression calculated prevalences of 12.9%, 7.2% and 10.8% respectively. Point prevalence of depression was significantly higher in women (14.4%), countries with a medium human development index (HDI) (29.2%), studies published from 2004 to 2014 (15.4%) and when using self-reporting instruments (17.3%) to assess depression. Heterogeneity was identified by meta-regression and subgroup analysis, and response rate, percentage of women and year of publication, respectively, were determined contribute to depression prevalence. This meta-analysis allows benchmarking of the prevalence of depression during the era when online health information emerged, facilitating future comparisons.

828 citations


Journal ArticleDOI
TL;DR: It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector’s volumetric efficiency.
Abstract: We identify the physical mechanism through which newly developed quaternary ammonium salt (QAS) deposit control additives (DCAs) affect the rheological properties of cavitating turbulent flows, resulting in an increase in the volumetric efficiency of clean injectors fuelled with diesel or biodiesel fuels. Quaternary ammonium surfactants with appropriate counterions can be very effective in reducing the turbulent drag in aqueous solutions, however, less is known about the effect of such surfactants in oil-based solvents or in cavitating flow conditions. Small-angle neutron scattering (SANS) investigations show that in traditional DCA fuel compositions only reverse spherical micelles form, whereas reverse cylindrical micelles are detected by blending the fuel with the QAS additive. Moreover, experiments utilising X-ray micro computed tomography (micro-CT) in nozzle replicas, quantify that in cavitation regions the liquid fraction is increased in the presence of the QAS additive. Furthermore, high-flux X-ray phase contrast imaging (XPCI) measurements identify a flow stabilization effect in the region of vortex cavitation by the QAS additive. The effect of the formation of cylindrical micelles is reproduced with computational fluid dynamics (CFD) simulations by including viscoelastic characteristics for the flow. It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector’s volumetric efficiency.

704 citations


Journal ArticleDOI
TL;DR: GOATOOLS, a Python-based library, makes it more efficient to stay current with the latest ontologies and annotations, perform gene ontology enrichment analyses to determine over- and under-represented terms, and organize results for greater clarity and easier interpretation using a novel GOATOOLs GO grouping method.
Abstract: The biological interpretation of gene lists with interesting shared properties, such as up- or down-regulation in a particular experiment, is typically accomplished using gene ontology enrichment analysis tools. Given a list of genes, a gene ontology (GO) enrichment analysis may return hundreds of statistically significant GO results in a "flat" list, which can be challenging to summarize. It can also be difficult to keep pace with rapidly expanding biological knowledge, which often results in daily changes to any of the over 47,000 gene ontologies that describe biological knowledge. GOATOOLS, a Python-based library, makes it more efficient to stay current with the latest ontologies and annotations, perform gene ontology enrichment analyses to determine over- and under-represented terms, and organize results for greater clarity and easier interpretation using a novel GOATOOLS GO grouping method. We performed functional analyses on both stochastic simulation data and real data from a published RNA-seq study to compare the enrichment results from GOATOOLS to two other popular tools: DAVID and GOstats. GOATOOLS is freely available through GitHub: https://github.com/tanghaibao/goatools .

603 citations


Journal ArticleDOI
TL;DR: A global-scale assessment of the occurrence of sandy beaches and rates of shoreline change therein is presented, using freely available optical satellite images captured since 1984 to identify the majority of the sandy shorelines in marine protected areas that are eroding.
Abstract: Coastal zones constitute one of the most heavily populated and developed land zones in the world. Despite the utility and economic benefits that coasts provide, there is no reliable global-scale assessment of historical shoreline change trends. Here, via the use of freely available optical satellite images captured since 1984, in conjunction with sophisticated image interrogation and analysis methods, we present a global-scale assessment of the occurrence of sandy beaches and rates of shoreline change therein. Applying pixel-based supervised classification, we found that 31% of the world’s ice-free shoreline are sandy. The application of an automated shoreline detection method to the sandy shorelines thus identified resulted in a global dataset of shoreline change rates for the 33 year period 1984–2016. Analysis of the satellite derived shoreline data indicates that 24% of the world’s sandy beaches are eroding at rates exceeding 0.5 m/yr, while 28% are accreting and 48% are stable. The majority of the sandy shorelines in marine protected areas are eroding, raising cause for serious concern.

599 citations


Journal ArticleDOI
TL;DR: The ultrathin conformal OPT array based on air-stable n-type PTCDI-C13H27 was fabricated and shows excellent electrical and photoelectrical performance, good device uniformity, and remains stable in electron mobility by 83% after 90 days compared to the initial values.
Abstract: Development of conformal n-channel organic phototransistor (OPT) array is urgent for future applications of organic complementary circuits in portable and wearable electronics and optoelectronics. In this work, the ultrathin conformal OPT array based on air-stable n-type PTCDI-C13H27 was fabricated. The OPT array shows excellent electrical and photoelectrical performance, good device uniformity, and remains stable in electron mobility by 83% after 90 days compared to the initial values. Eventhough mobility, on-state current, off-state current, and photocurrent of PTCDI-C13H27 thin film phototransistor show slight decrease with the decreased bending radius, the device still remains the stable photosensitivity as high as 104 when the device is freely adhered on the 2D surfaces and 3D hemispherical sphere, which is in a class with the highest photosensitivity for perylene diimide derivatives. These results present the promising application potential of our conformable air-stable n-type PTCDI-C13H27 OPTs as the photodetection system of curved artificial compound eyes in wearable and portable electronics and optoelectronics.

Journal ArticleDOI
TL;DR: The optical characterization of tyrosine, thyroglobulin and iodine using a time domain broadband diffuse optical spectrometer in the 550–1350 nm range is presented and a brief comparison with other known tissue constituents is presented, which reveals key spectral regions for the quantification of the thyroid absorbers in an in vivo scenario.
Abstract: Thyroid plays an important role in the endocrine system of the human body. Its characterization by diffuse optics can open new path ways in the non-invasive diagnosis of thyroid pathologies. Yet, the absorption spectra of tyrosine and thyroglobulin–key tissue constituents specific to the thyroid organ–in the visible to near infrared range are not fully available. Here, we present the optical characterization of tyrosine (powder), thyroglobulin (granular form) and iodine (aqueous solution) using a time domain broadband diffuse optical spectrometer in the 550–1350 nm range. Various systematic errors caused by physics of photo migration and sample inherent properties were effectively suppressed by means of advanced time domain diffuse optical methods. A brief comparison with various other known tissue constituents is presented, which reveals key spectral regions for the quantification of the thyroid absorbers in an in vivo scenario.

Journal ArticleDOI
TL;DR: The discovery of Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site is discovered and it is suggested that the role of this regulation in control of Warburg effect and tumor growth may lead to Warburg phenotype in cancer.
Abstract: We report here the identification of α1 Na/K-ATPase as a major regulator of the proto-oncogene Src kinase and the role of this regulation in control of Warburg effect and tumor growth. Specifically, we discovered Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site and that Y260 phosphorylation is required for Src-mediated signal transduction in response to a number of stimuli including EGF. As such, it enables a dynamic control of aerobic glycolysis. However, such regulation appears to be lost or attenuated in human cancers as the expression of Na/K-ATPase α1 was significantly decreased in prostate, breast and kidney cancers, and further reduced in corresponding metastatic lesions in patient samples. Consistently, knockdown of α1 Na/K-ATPase led to a further increase in lactate production and the growth of tumor xenograft. These findings suggest that α1 Na/K-ATPase works as a tumor suppressor and that a loss of Na/K-ATPase-mediated Src regulation may lead to Warburg phenotype in cancer.

Journal ArticleDOI
TL;DR: A fast non-iterative technique to visualize the total extracellular electrolyte concentration (EEC), which is a fundamental component of the conductivity, is presented.
Abstract: Techniques for electrical brain stimulation (EBS), in which weak electrical stimulation is applied to the brain, have been extensively studied in various therapeutic brain functional applications. The extracellular fluid in the brain is a complex electrolyte that is composed of different types of ions, such as sodium (Na+), potassium (K+), and calcium (Ca+). Abnormal levels of electrolytes can cause a variety of pathological disorders. In this paper, we present a novel technique to visualize the total electrolyte concentration in the extracellular compartment of biological tissues. The electrical conductivity of biological tissues can be expressed as a product of the concentration and the mobility of the ions. Magnetic resonance electrical impedance tomography (MREIT) investigates the electrical properties in a region of interest (ROI) at low frequencies (below 1 kHz) by injecting currents into the brain region. Combining with diffusion tensor MRI (DT-MRI), we analyze the relation between the concentration of ions and the electrical properties extracted from the magnetic flux density measurements using the MREIT technique. By measuring the magnetic flux density induced by EBS, we propose a fast non-iterative technique to visualize the total extracellular electrolyte concentration (EEC), which is a fundamental component of the conductivity. The proposed technique directly recovers the total EEC distribution associated with the water transport mobility tensor.

Journal ArticleDOI
TL;DR: The Intestine Chip may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.
Abstract: Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.

Journal ArticleDOI
TL;DR: A correction to this article has been published and is linked from the HTML and PDF versions of this paper.
Abstract: A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

Journal ArticleDOI
TL;DR: The results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.
Abstract: Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79-3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28-2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30-2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.

Journal ArticleDOI
TL;DR: Interestingly, PEGylated IonPs but not PEI-coated IONPs were able to induce autophagy, which may play a protective role against the cytotoxicity of ION Ps, which is crucial to consider the size and coating properties in their applications.
Abstract: Iron oxide nanoparticles (IONPs) have been increasingly used in biomedical applications, but the comprehensive understanding of their interactions with biological systems is relatively limited. In this study, we systematically investigated the in vitro cell uptake, cytotoxicity, in vivo distribution, clearance and toxicity of commercially available and well-characterized IONPs with different sizes and coatings. Polyethylenimine (PEI)-coated IONPs exhibited significantly higher uptake than PEGylated ones in both macrophages and cancer cells, and caused severe cytotoxicity through multiple mechanisms such as ROS production and apoptosis. 10 nm PEGylated IONPs showed higher cellular uptake than 30 nm ones, and were slightly cytotoxic only at high concentrations. Interestingly, PEGylated IONPs but not PEI-coated IONPs were able to induce autophagy, which may play a protective role against the cytotoxicity of IONPs. Biodistribution studies demonstrated that all the IONPs tended to distribute in the liver and spleen, and the biodegradation and clearance of PEGylated IONPs in these tissues were relatively slow (>2 weeks). Among them, 10 nm PEGylated IONPs achieved the highest tumor uptake. No obvious toxicity was found for PEGylated IONPs in BALB/c mice, whereas PEI-coated IONPs exhibited dose-dependent lethal toxicity. Therefore, it is crucial to consider the size and coating properties of IONPs in their applications.

Journal ArticleDOI
TL;DR: It was found that the lattice parameter mismatch of the component monocarbides is a key factor for predicting single phase solid solution formation, revealing a vast new compositional space for the exploration of new UHTCs.
Abstract: Bulk equiatomic (Hf-Ta-Zr-Ti)C and (Hf-Ta-Zr-Nb)C high entropy Ultra-High Temperature Ceramic (UHTC) carbide compositions were fabricated by ball milling and Spark Plasma Sintering (SPS). It was found that the lattice parameter mismatch of the component monocarbides is a key factor for predicting single phase solid solution formation. The processing route was further optimised for the (Hf-Ta-Zr-Nb)C composition to produce a high purity, single phase, homogeneous, bulk high entropy material (99% density); revealing a vast new compositional space for the exploration of new UHTCs. One sample was observed to chemically decompose; indicating the presence of a miscibility gap. While this suggests the system is not thermodynamically stable to room temperature, it does reveal further potential for the development of new in situ formed UHTC nanocomposites. The optimised material was subjected to nanoindentation testing and directly compared to the constituent mono/binary carbides, revealing a significantly enhanced hardness (36.1 ± 1.6 GPa,) compared to the hardest monocarbide (HfC, 31.5 ± 1.3 GPa) and the binary (Hf-Ta)C (32.9 ± 1.8 GPa).

Journal ArticleDOI
TL;DR: In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties.
Abstract: In β titanium alloys, the β stabilizers segregate easily and considerable effort has been devoted to alleviate/eliminate the segregation. In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties. An as-cast Ti-9Mo-6W alloy exhibited segregation of Mo and W at the tens of micrometre scale. This was subjected to cold rolling and flash annealing at 820 oC for 2 and 5 mins. The solidification segregation of Mo and W leads to a locally different microstructure after cold rolling (i.e., nanostructured β phase in the regions rich in Mo and W and plate-like martensite and β phase in regions relatively poor in Mo and W), which play a decisive role in the formation of the heterogeneous microstructure. Tensile tests showed that this alloy exhibited a superior combination of high yield strength (692 MPa), high tensile strength (1115 MPa), high work hardening rate and large uniform elongation (33.5%). More importantly, the new technique proposed in this work could be potentially applicable to other alloy systems with segregation problems.

Journal ArticleDOI
TL;DR: It is inferred that dissolved oxygen led to the transformation of hopane precursors into rearranged hopanes during the early stages of diagenesis, and the hydrocarbon signatures point towards oxic bottom waters during the deposition of Unit 3 of the Xiamaling Formation, which is consistent with the earlier oxygen-minimum zone environmental interpretation of this Unit.
Abstract: The Xiamaling Formation in the North China Block contains a well-preserved 1400 Ma sedimentary sequence with a low degree of thermal maturity. Previous studies have confirmed the dynamic and complex nature of this evolving marine setting, including the existence of an oxygen-minimum zone, using multi-proxy approaches, including iron speciation, trace metal dynamics, and organic geochemistry. Here, we investigate the prevailing redox conditions during diagenesis via the biomarkers of rearranged hopanes from the finely laminated sediments of the organic-rich black shales in Units 2 and 3 of the Xiamaling Formation. We find that rearranged hopanes are prominent in the biomarker composition of the oxygen-minimum zone sediment, which is completely different from that of the sediment in the overlying anoxic strata. Since the transition process from hopanes to rearranged hopanes requires oxygen via oxidation at the C-l6 alkyl position of 17α(H)-hopanes, we infer that dissolved oxygen led to the transformation of hopane precursors into rearranged hopanes during the early stages of diagenesis. The use of hopanoid hydrocarbons as biomarkers of marine redox conditions has rarely been previously reported, and the hydrocarbon signatures point towards oxic bottom waters during the deposition of Unit 3 of the Xiamaling Formation, which is consistent with the earlier oxygen-minimum zone environmental interpretation of this Unit.

Journal ArticleDOI
TL;DR: This corrects the article DOI: 10.1038/srep21259 to indicate that the author of the paper is a doctor of medicine rather than a scientist, as previously reported.
Abstract: Scientific Reports 6: Article number: 21259; published online: 16 February 2016; updated: 29 January 2018. This Article contains typographical errors. In Table 1, the ‘Yield per plant (g)’ for PAT11 (NE) “23.09 ± 0.92” should read “23.09 ± 8.11”. In the Methods section under subheading ‘PCR analysisof transgenic rice’,

Journal ArticleDOI
TL;DR: A new spatially resolved warm-season (May-September) temperature reconstruction for the period 1–2000 CE using 59 multiproxy records from a wide range of East Asian regions shows good agreement and an important role of internal variability and external forcing on multi-decadal time-scales.
Abstract: East Asia has experienced strong warming since the 1960s accompanied by an increased frequency of heat waves and shrinking glaciers over the Tibetan Plateau and the Tien Shan. Here, we place the recent warmth in a long-term perspective by presenting a new spatially resolved warm-season (May-September) temperature reconstruction for the period 1–2000 CE using 59 multiproxy records from a wide range of East Asian regions. Our Bayesian Hierarchical Model (BHM) based reconstructions generally agree with earlier shorter regional temperature reconstructions but are more stable due to additional temperature sensitive proxies. We find a rather warm period during the first two centuries CE, followed by a multi-century long cooling period and again a warm interval covering the 900–1200 CE period (Medieval Climate Anomaly, MCA). The interval from 1450 to 1850 CE (Little Ice Age, LIA) was characterized by cooler conditions and the last 150 years are characterized by a continuous warming until recent times. Our results also suggest that the 1990s were likely the warmest decade in at least 1200 years. The comparison between an ensemble of climate model simulations and our summer reconstructions since 850 CE shows good agreement and an important role of internal variability and external forcing on multi-decadal time-scales.

Journal ArticleDOI
TL;DR: In this article, the Faster R-CNN-based CAD system was proposed to detect malignant or benign lesions on a mammogram without any human intervention, which achieved 2nd place in the Digital Mammography DREAM Challenge with AUC = 0.95.
Abstract: In the last two decades, Computer Aided Detection (CAD) systems were developed to help radiologists analyse screening mammograms, however benefits of current CAD technologies appear to be contradictory, therefore they should be improved to be ultimately considered useful. Since 2012, deep convolutional neural networks (CNN) have been a tremendous success in image recognition, reaching human performance. These methods have greatly surpassed the traditional approaches, which are similar to currently used CAD solutions. Deep CNN-s have the potential to revolutionize medical image analysis. We propose a CAD system based on one of the most successful object detection frameworks, Faster R-CNN. The system detects and classifies malignant or benign lesions on a mammogram without any human intervention. The proposed method sets the state of the art classification performance on the public INbreast database, AUC = 0.95. The approach described here has achieved 2nd place in the Digital Mammography DREAM Challenge with AUC = 0.85. When used as a detector, the system reaches high sensitivity with very few false positive marks per image on the INbreast dataset. Source code, the trained model and an OsiriX plugin are published online at https://github.com/riblidezso/frcnn_cad .

Journal ArticleDOI
TL;DR: In this article, the authors report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture.
Abstract: In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (21-36% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.

Journal ArticleDOI
TL;DR: It is concluded that MetS and control murine hearts have unique transcriptional profiles and exhibit a partially specific transcriptional response to ACE-inhibition, which appears to counteract some of the MetS-specific pathways, while also activating cardioprotective mechanisms.
Abstract: Cardiovascular disease associated with metabolic syndrome has a high prevalence, but the mechanistic basis of metabolic cardiomyopathy remains poorly understood. We characterised the cardiac transcriptome in a murine metabolic syndrome (MetS) model (LDLR−/−; ob/ob, DKO) relative to the healthy, control heart (C57BL/6, WT) and the transcriptional changes induced by ACE-inhibition in those hearts. RNA-Seq, differential gene expression and transcription factor analysis identified 288 genes differentially expressed between DKO and WT hearts implicating 72 pathways. Hallmarks of metabolic cardiomyopathy were increased activity in integrin-linked kinase signalling, Rho signalling, dendritic cell maturation, production of nitric oxide and reactive oxygen species in macrophages, atherosclerosis, LXR-RXR signalling, cardiac hypertrophy, and acute phase response pathways. ACE-inhibition had a limited effect on gene expression in WT (55 genes, 23 pathways), and a prominent effect in DKO hearts (1143 genes, 104 pathways). In DKO hearts, ACE-I appears to counteract some of the MetS-specific pathways, while also activating cardioprotective mechanisms. We conclude that MetS and control murine hearts have unique transcriptional profiles and exhibit a partially specific transcriptional response to ACE-inhibition.

Journal ArticleDOI
TL;DR: Cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2 are presented, finding that neither binding to ACE2 nor cleavage bytrypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARV S.
Abstract: Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2′.

Journal ArticleDOI
TL;DR: The measurements showed that nanogrooving increases the surface area of carbon microtubes, as a result, die swelling of the extrudate is reduced and the mechanical strength of composite is reinforced due to stronger interactions between Nanogrooved carbon tubes and polymer matrix.
Abstract: Extrusion processing of carbon tubes can be problematic due to their poor interfacial interactions with polymeric matrices. Surface chemical modification of carbon tubes can be utilized to create bonding sites to form networks with polymer chains. However, chemical reactions resulting in intermolecular primary bonding limit processability of extrudate, since they cause unstable rheological behaviour, and thus decrease the stock holding time, which is determinative in extrusion. This study presents a method for the synthesis of carbon microtubes with physically modified surface area to improve the filler and matrix interfacial interactions. The key concept is the formation of a nanogrooved topography, through acoustic cavitation on the surface of processing fibres. The effect of nanogrooving on roughness parameters is described, along with the role of surface modified carbon tubes on rheological behaviour, homogeneity, and coherency of extrudate. The measurements showed that nanogrooving increases the surface area of carbon microtubes, as a result, die swelling of the extrudate is reduced. Furthermore, after solidification, the mechanical strength of composite is reinforced due to stronger interactions between nanogrooved carbon tubes and polymer matrix.

Journal ArticleDOI
TL;DR: A more physiologically–relevant model of the colonic milieu is created to study gut pathogen biology, incorporating human faecal water into growth media and assessing the physiological effects of this on C. difficile strain 630, and it is shown that interaction with FW causes fundamental changes in C. diffusion biology that will lead to increased disease transmissibility.
Abstract: Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility.

Journal ArticleDOI
TL;DR: Two methods of obtaining k-space mapping and real-space imaging in high-resolution ARPES microscopy are presented, which clearly indicate higher accuracy in k- space mapping as well as higher efficiency in real- space imaging, and thus improved throughput of high- resolution APRES microscopy.
Abstract: Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique in materials science, as it can directly probe electronic states inside solids in energy (E) and momentum (k) space. As an advanced technique, spatially-resolved ARPES using a well-focused light source (high-resolution ARPES microscopy) has recently attracted growing interests because of its capability to obtain local electronic information at micro- or nano-metric length scales. However, there exist several technical challenges to guarantee high precision in determining translational and rotational positions in reasonable measurement time. Here we present two methods of obtaining k-space mapping and real-space imaging in high-resolution ARPES microscopy. One method is for k-space mapping measurements that enables us to keep a target position on a sample surface during sample rotation by compensating rotation-induced displacements (tracing acquisition method). Another method is for real-space imaging measurements that significantly reduces total acquisition time (scanning acquisition method). We provide several examples of these methods that clearly indicate higher accuracy in k-space mapping as well as higher efficiency in real-space imaging, and thus improved throughput of high-resolution APRES microscopy.