Author
Amnon Shashua
Other affiliations: Technion – Israel Institute of Technology, Massachusetts Institute of Technology, Stanford University
Bio: Amnon Shashua is an academic researcher from Hebrew University of Jerusalem. The author has contributed to research in topics: Wearable computer & Host (network). The author has an hindex of 67, co-authored 313 publications receiving 15410 citations. Previous affiliations of Amnon Shashua include Technion – Israel Institute of Technology & Massachusetts Institute of Technology.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, a class-based image-based recognition and rendering with varying illumination has been proposed, based on a definition of an illumination invariant signature image which enables an analytic generation of the image space with different illumination conditions.
Abstract: The paper addresses the problem of "class-based" image-based recognition and rendering with varying illumination. The rendering problem is defined as follows: Given a single input image of an object and a sample of images with varying illumination conditions of other objects of the same general class, re-render the input image to simulate new illumination conditions. The class-based recognition problem is similarly defined: Given a single image of an object in a database of images of other objects, some of them multiply sampled under varying illumination, identify (match) any novel image of that object under varying illumination with the single image of that object in the database. We focus on Lambertian surface classes and, in particular, the class of human faces. The key result in our approach is based on a definition of an illumination invariant signature image which enables an analytic generation of the image space with varying illumination. We show that a small database of objects-in our experiments as few as two objects-is sufficient for generating the image space with varying illumination of any new object of the class from a single input image of that object. In many cases, the recognition results outperform by far conventional methods and the re-rendering is of remarkable quality considering the size of the database of example images and the mild preprocess required for making the algorithm work.
669 citations
Posted Content•
TL;DR: This paper applies deep reinforcement learning to the problem of forming long term driving strategies and shows how policy gradient iterations can be used without Markovian assumptions, and decomposes the problem into a composition of a Policy for Desires and trajectory planning with hard constraints.
Abstract: Autonomous driving is a multi-agent setting where the host vehicle must apply sophisticated negotiation skills with other road users when overtaking, giving way, merging, taking left and right turns and while pushing ahead in unstructured urban roadways. Since there are many possible scenarios, manually tackling all possible cases will likely yield a too simplistic policy. Moreover, one must balance between unexpected behavior of other drivers/pedestrians and at the same time not to be too defensive so that normal traffic flow is maintained.
In this paper we apply deep reinforcement learning to the problem of forming long term driving strategies. We note that there are two major challenges that make autonomous driving different from other robotic tasks. First, is the necessity for ensuring functional safety - something that machine learning has difficulty with given that performance is optimized at the level of an expectation over many instances. Second, the Markov Decision Process model often used in robotics is problematic in our case because of unpredictable behavior of other agents in this multi-agent scenario. We make three contributions in our work. First, we show how policy gradient iterations can be used without Markovian assumptions. Second, we decompose the problem into a composition of a Policy for Desires (which is to be learned) and trajectory planning with hard constraints (which is not learned). The goal of Desires is to enable comfort of driving, while hard constraints guarantees the safety of driving. Third, we introduce a hierarchical temporal abstraction we call an "Option Graph" with a gating mechanism that significantly reduces the effective horizon and thereby reducing the variance of the gradient estimation even further.
575 citations
Posted Content•
TL;DR: A white-box, interpretable, mathematical model for safety assurance, which the authors call-Sensitive Safety (RSS), and a design of a system that adheres to the safety assurance requirements and is scalable to millions of cars.
Abstract: In recent years, car makers and tech companies have been racing towards self driving cars. It seems that the main parameter in this race is who will have the first car on the road. The goal of this paper is to add to the equation two additional crucial parameters. The first is standardization of safety assurance --- what are the minimal requirements that every self-driving car must satisfy, and how can we verify these requirements. The second parameter is scalability --- engineering solutions that lead to unleashed costs will not scale to millions of cars, which will push interest in this field into a niche academic corner, and drive the entire field into a "winter of autonomous driving". In the first part of the paper we propose a white-box, interpretable, mathematical model for safety assurance, which we call Responsibility-Sensitive Safety (RSS). In the second part we describe a design of a system that adheres to our safety assurance requirements and is scalable to millions of cars.
570 citations
07 Aug 2005
TL;DR: A "direct" positive-preserving gradient descent algorithm and an alternating scheme based on repeated multiple rank-1 problems are derived and motivate the use of n-NTF in three areas of data analysis.
Abstract: We derive algorithms for finding a non-negative n-dimensional tensor factorization (n-NTF) which includes the non-negative matrix factorization (NMF) as a particular case when n = 2. We motivate the use of n-NTF in three areas of data analysis: (i) connection to latent class models in statistics, (ii) sparse image coding in computer vision, and (iii) model selection problems. We derive a "direct" positive-preserving gradient descent algorithm and an alternating scheme based on repeated multiple rank-1 problems.
555 citations
14 Jun 2004
TL;DR: The functional and architectural breakdown of a monocular pedestrian detection system is described and the approach for single-frame classification based on a novel scheme of breaking down the class variability by repeatedly training a set of relatively simple classifiers on clusters of the training set is described.
Abstract: We describe the functional and architectural breakdown of a monocular pedestrian detection system. We describe in detail our approach for single-frame classification based on a novel scheme of breaking down the class variability by repeatedly training a set of relatively simple classifiers on clusters of the training set. Single-frame classification performance results and system level performance figures for daytime conditions are presented with a discussion about the remaining gap to meet a daytime normal weather condition production system.
424 citations
Cited by
More filters
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
40,257 citations
Book•
[...]
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
38,208 citations
01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.
14,282 citations
TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.
Abstract: We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.
11,674 citations
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.
9,658 citations