scispace - formally typeset
Search or ask a question
Author

Anand Rajaraman

Bio: Anand Rajaraman is an academic researcher from Walmart. The author has contributed to research in topics: Web search query & Query language. The author has an hindex of 42, co-authored 93 publications receiving 13084 citations. Previous affiliations of Anand Rajaraman include Stanford University & Amazon.com.


Papers
More filters
Book
01 Oct 2011
TL;DR: This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets, and explains the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing.
Abstract: The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.

1,795 citations

Proceedings ArticleDOI
01 Jun 1996
TL;DR: In this article, a lattice framework is used to express dependencies among views and greedy algorithms are presented to determine a good set of views to materialize, with a small constant factor of optimal.
Abstract: Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total sales. The values of many of these cells are dependent on the values of other cells in the data cube. A common and powerful query optimization technique is to materialize some or all of these cells rather than compute them from raw data each time. Commercial systems differ mainly in their approach to materializing the data cube. In this paper, we investigate the issue of which cells (views) to materialize when it is too expensive to materialize all views. A lattice framework is used to express dependencies among views. We present greedy algorithms that work off this lattice and determine a good set of views to materialize. The greedy algorithm performs within a small constant factor of optimal under a variety of models. We then consider the most common case of the hypercube lattice and examine the choice of materialized views for hypercubes in detail, giving some good tradeoffs between the space used and the average time to answer a query.

1,499 citations

Proceedings Article
03 Sep 1996
TL;DR: The Information Manifold is described, an implemented system that provides uniform access to a heterogeneous collection of more than 100 information sources, many of them on the WWW, and algorithms that use the source descriptions to prune effciently the set of information sources for a given query are described.
Abstract: We witness a rapid increase in the number of structured information sources that are available online, especially on the WWW. These sources include commercial databases on product information, stock market information, real estate, automobiles, and entertainment. We would like to use the data stored in these databases to answer complex queries that go beyond keyword searches. We face the following challenges: (1) Several information sources store interrelated data, and any query-answering system must understand the relationships between their contents. (2) Many sources are not full-featured database systems and can answer only a small set of queries over their data (for example, forms on the WWW restrict the set of queries one can (3) Since the number of sources is very large, effective techniques are needed to prune the set of information sources accessed to answer a query. (4) The details of interacting with each source vary greatly. We describe the Information Manifold, an implemented system that provides uniform access to a heterogeneous collection of more than 100 information sources, many of them on the WWW. IM tackles the above problems by providing a mechanism to describe declaratively the contents and query capabilities of available information sources. There is a clean separation between the declarative source description and the actual details of interacting with an information source. We describe algorithms that use the source descriptions to prune effciently the set of information sources for a given query and practical algorithms to generate executable query plans. The query plans we generate can inolve querying several information sources and combining their answers. We also present experimental studies that indicate that the architecture and algorithms used in the Information Manifold scale up well to several hundred information sources

1,302 citations

Journal ArticleDOI
31 Mar 1997
TL;DR: TSIMMIS—The Stanford-IBM Manager of Multiple Information sources offers a datamodel and a common query language that are designed to support the combining of information from many different sources.
Abstract: TSIMMIS—The Stanford-IBM Manager of Multiple Information Sources—is a system for integrating information It offers a data model and a common query language that are designed to support the combining of information from many different sources It also offers tools for generating automatically the components that are needed to build systems for integrating information In this paper we shall discuss the principal architectural features and their rationale

818 citations

Proceedings ArticleDOI
01 Sep 2006

650 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Proceedings ArticleDOI
24 Aug 2003
TL;DR: An analysis framework based on submodular functions shows that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models, and suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.
Abstract: Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.

5,887 citations

Journal ArticleDOI
01 Mar 1997
TL;DR: An overview of data warehousing and OLAP technologies, with an emphasis on their new requirements, is provided, based on a tutorial presented at the VLDB Conference, 1996.
Abstract: Data warehousing and on-line analytical processing (OLAP) are essential elements of decision support, which has increasingly become a focus of the database industry. Many commercial products and services are now available, and all of the principal database management system vendors now have offerings in these areas. Decision support places some rather different requirements on database technology compared to traditional on-line transaction processing applications. This paper provides an overview of data warehousing and OLAP technologies, with an emphasis on their new requirements. We describe back end tools for extracting, cleaning and loading data into a data warehouse; multidimensional data models typical of OLAP; front end client tools for querying and data analysis; server extensions for efficient query processing; and tools for metadata management and for managing the warehouse. In addition to surveying the state of the art, this paper also identifies some promising research issues, some of which are related to problems that the database research community has worked on for years, but others are only just beginning to be addressed. This overview is based on a tutorial that the authors presented at the VLDB Conference, 1996.

2,835 citations

Proceedings ArticleDOI
03 Jun 2002
TL;DR: The tutorial is focused on some of the theoretical issues that are relevant for data integration: modeling a data integration application, processing queries in data integration, dealing with inconsistent data sources, and reasoning on queries.
Abstract: Data integration is the problem of combining data residing at different sources, and providing the user with a unified view of these data. The problem of designing data integration systems is important in current real world applications, and is characterized by a number of issues that are interesting from a theoretical point of view. This document presents on overview of the material to be presented in a tutorial on data integration. The tutorial is focused on some of the theoretical issues that are relevant for data integration. Special attention will be devoted to the following aspects: modeling a data integration application, processing queries in data integration, dealing with inconsistent data sources, and reasoning on queries.

2,716 citations

01 Jan 2006
TL;DR: There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99].
Abstract: The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99], Building Data Mining Applications for CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning Tools and Techniques by Witten and Frank [WF05], Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01], The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF01], Data Mining: Introductory and Advanced Topics by Dunham, and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03]. There are also books containing collections of papers on particular aspects of knowledge discovery, such as Machine Learning and Data Mining: Methods and Applications edited by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major database, data mining and machine learning conferences.

2,591 citations