scispace - formally typeset
Search or ask a question

Showing papers by "Anatoly Klypin published in 2014"


Journal ArticleDOI
TL;DR: In this article, the effect of radiation pressure in cosmological, zoom-in galaxy formation simulations is modeled as a non-thermal pressure that acts only in dense and optically thick star-forming regions.
Abstract: Any successful model of galaxy formation needs to explain the low rate of star formation in the small progenitors of today's galaxies. This inefficiency is necessary for reproducing the low stellar-to-virial mass fractions, suggested by current abundance matching models. A possible driver of this low efficiency is the radiation pressure exerted by ionizing photons from massive stars. The effect of radiation pressure in cosmological, zoom-in galaxy formation simulations is modeled as a non-thermal pressure that acts only in dense and optically thick star-forming regions. We also include photoionization and photoheating by massive stars. The full photoionization of hydrogen reduces the radiative cooling in the $10^{4-4.5}$ K regime. The main effect of radiation pressure is to regulate and limit the high values of gas density and the amount of gas available for star formation. This maintains a low star formation rate of $\sim 1 \ {\rm M_\odot} \ {\rm yr}^{-1}$ in halos with masses about $10^{11} \ {M_\odot}$ at $z\simeq3$. Infrared trapping and photoionization/photoheating processes are secondary effects in this mass range. The galaxies residing in these low-mass halos contain only $\sim0.6\%$ of the total virial mass in stars, roughly consistent with abundance matching. Radiative feedback maintains an extended galaxy with a rising circular velocity profile.

219 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos.
Abstract: We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances ( at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

125 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that the lower baryon fraction in dSphs compared to the cosmic mean and the concentration of baryons in the inner part of the Milky Way halo can go a long way towards explaining the observed circular velocity profiles.
Abstract: Dwarf spheroidal galaxies (dSphs) are extremely gas-poor, dark matter-dominated galaxies, which make them ideal to test the predictions of the cold dark matter (CDM) model. We argue that the removal of the baryonic component from gas-rich dwarf irregular galaxies, the progenitors of dSphs, can substantially reduce their centr al density. Thus, it may play an important role in alleviating one of the problems of the CDM model related to the structure of relatively massive satellite galaxies of the Milky Way (MW). Traditionally, collisionless cosmological N-body simulations are used when confronting theoretical predictions with observations. However, these simulations assume that the baryon fraction everywhere in the Universe is equal to the cosmic mean, an assumption which is incorrect for dSphs. We find that the combination of (i) the lower baryon fraction in dSphs compared to the cosmic mean and (ii) the concentration of baryons in the inner part of the MW halo can go a long way towards explaining the observed circular velocity profiles of dSphs. We perform controlled numerical simulations that mimic the effects of baryons. From these we find that the blowing away of baryons by ram pressure, when the dwarfs fall into larger galaxies, decreases the circular velocity profile of the satellite and reduces the densi ty in the central �200‐500 pc by a factor of (1 fb) 4 � 0.5, where fb is the cosmological fraction of baryons. Additionally, the enhanced baryonic mass in the central regions of the parent galaxy generates tidal forces, which are larger than those experienced by subhaloes in traditional N-body simulations. Increased tidal forces substantially alter circular velocit y profiles for satellites with pericentres less than 50 kpc. We show that these two effects are strong enough to bring the predictions of subhaloes from CDM simulations into agreement with the observed structure of MW dSphs, regardless of the details of the baryonic processes.

116 citations


Journal ArticleDOI
TL;DR: In this article, the circumgalactic medium properties of a z = 0.54 simulated dwarf galaxy using hydroART simulations were analyzed using a variety of methods, including objective absorption line detection, apparent optical depth (AOD) measurements, Voigt profile decomposition, and ionization modeling.
Abstract: We study the circumgalactic medium (CGM) of a z=0.54 simulated dwarf galaxy using hydroART simulations. We present our analysis methods, which emulate observations, including objective absorption line detection, apparent optical depth (AOD) measurements, Voigt profile (VP) decomposition, and ionization modeling. By comparing the inferred CGM gas properties from the absorption lines directly to the gas selected by low ionization HI and MgII, and by higher ionization CIV and OVI absorption, we examine how well observational analysis methods recover the "true" properties of CGM gas. In this dwarf galaxy, low ionization gas arises in sub-kiloparsec "cloud" structures, but high ionization gas arises in multiple extended structures spread over 100 kpc; due to complex velocity fields, highly separated structures give rise to absorption at similar velocities. We show that AOD and VP analysis fails to accurately characterize the spatial, kinematic, and thermal conditions of high ionization gas. We find that HI absorption selected gas and OVI absorption gas arise in totally distinct physical gas structures, calling into question current observational techniques employed to infer metallicities and the total mass of "warm-hot" CGM gas. We present a method to determine whether CIV and OVI absorbing gas is photo or collisionally ionized and whether the assumption of ionization equilibrium is sound. As we discuss, these and additional findings have strong implications for how accurately currently employed observational absorption line methods recover the true gas properties, and ultimately, our ability to understand the CGM and its role in galaxy evolution.

2 citations