scispace - formally typeset
Search or ask a question

Showing papers by "Beatriz G. Galati published in 2020"


Journal ArticleDOI
01 Jul 2020-Flora
TL;DR: Histological and ultrastructural changes of pollen grains after 45 days of conservation at different temperatures revealed differences in the fibrillar structure of the intine, as well as the decrease in starch reserve in pollen grains stored at 5 °C andat room temperature.

3 citations


Journal ArticleDOI
TL;DR: The location and abundance of papillae are the most important traits that allow us recognize and characterize the osmophores in Rhamnaceae, which do not seem to have any systematic value.
Abstract: Although the presence of scent was described for several species of Rhamnaceae, localization, morphology and structure of osmophores were unknown. We studied different species of the tribes Rhamneae (Rhamnoids clade), Pomaderreae, Colletieae, Paliureae (Ziziphoids clade) and the species Alphitonia excelsa (unknown tribe, Ziziphoids clade). We expect to have a better comprehension of these structures and provide information on which morphological and anatomical characters may support the phylogeny of the family. We localized the osmophores in the margins and top of the sepals using neutral red. Histochemical tests were made on transverse hand-cut sections of fresh sepals. Observations were made with stereoscopic and bright field microscopes, scanning and transmission electron microscopes. Papillae were observed in the zones with positive reaction to reagents. Different kinds of hairs are present in the sepal epidermis besides papillae. Epidermal cells present a striate cuticle with canals and cavities. Druses are abundant in most species. The ultrastructure of epidermal and subepidermal cells shows high metabolic activity: there are vesicles, mitochondria, endoplasmic reticulum, dictyosomes, plastids with lipids and starch. The vascularization is well developed and reaches the top of the sepal where the principal area of volatile components production is localized. The location and abundance of papillae are the most important traits that allow us recognize and characterize the osmophores in Rhamnaceae. There are no clear anatomical and morphological features exclusive of one clade or tribe. Therefore, in contrast to other sporophytic structures of this family, osmophores do not seem to have any systematic value.

3 citations


Journal ArticleDOI
TL;DR: The ultrastructural events that occur during pollen grains development, with emphasis in pollen grain wall and tapetum ontogeny in Ziziphus jujuba, Z. mucronata, Paliurus spina-christi (Paliureae) and Gouania ulmifolia (Gouanieae) are investigated and the phylogenetic relationships previously published for the Rhamnaceae family are supported.
Abstract: The aim of this paper is to investigate the ultrastructural events that occur during pollen grains development, with emphasis in pollen grain wall and tapetum ontogeny in Ziziphus jujuba, Z. mucronata, Paliurus spina-christi (Paliureae) and Gouania ulmifolia (Gouanieae). Anthers at different developmental stages were processed according to classic techniques for transmission electron microscopy. Differences in the number of endothecium layers and in the number of tapetal cell nuclei were found. Tapetal cells present an anastomosing tubular network and large vesicles with fibrillar content in the cytoplasm. Pollen grain development and ontogeny of pollen grain wall are similar in the four species. The number of endothecium layers, the number of nuclei of the tapetal cells and tapetal cells ultrastructure of the four species support the phylogenetic relationships previously published for the Rhamnaceae family. Tapetal vesicles with fibrillar or polysaccharide content seem to be an exclusive characteristic of the tribes Paliureae and Gouanieae. Some ultrastructural characters of the pollen grain wall development are common to other species of Rhamnaceae, such as the primexine matrix present at the microspore mother cell stage, the aperture entirely built up during the tetrad stage, the thick and fibrillar intine, and the granular infractectum.

2 citations


Journal ArticleDOI
TL;DR: To study the ontogeny of the extrafloral nectaries present in the inflorescences of Vigna luteola (Jacq.) Benth, the location, morphology, anatomy of the earliest stages, histology of the definitive structures and ultrastructure of the secretory stage were analyzed.
Abstract: To study the ontogeny of the extrafloral nectaries present in the inflorescences of Vigna luteola (Jacq.) Benth (Leguminosae, Phaseolinae), the location, morphology, anatomy of the earliest stages, histology of the definitive structures and ultrastructure of the secretory stage were analyzed. The extrafloral nectaries at different developmental stages were examined with light microscopy and scanning electron microscopy. The secretory stage was also examined with transmission electron microscopy. The racemose inflorescence of V. luteola has six nodes. At each node, a short globose secondary axis bears two flowers and one to three extrafloral nectaries. Each extrafloral nectary originates from the abscission of a flower bud and is formed by two differentiated zones: a ring of epidermal cells surrounding a group of longitudinally enlarged papillose central cells, both with underlying secretory parenchyma. The primary secretory tissue consists of the central cells, while the ring contributes to secretion to a lesser degree. Secretion is granulocrine, by means of exocytotic vesicles and plasmalemma invaginations. Four developmental stages succeed; the third one being the secretory. The extrafloral nectaries activity period starts when the flowers of the same secondary axis open and ceases before fruit development.

1 citations