scispace - formally typeset
Search or ask a question

Showing papers by "Bruce Hapke published in 2014"


Journal ArticleDOI
TL;DR: In this article, the authors derived spatially resolved near-global Hapke photometric parameter maps of the Moon from 21 months of LROC Wide Angle Camera (WAC) multispectral observations using a novel tile-by-tile method.
Abstract: We derived spatially resolved near-global Hapke photometric parameter maps of the Moon from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) multispectral observations using a novel “tile-by-tile method” (1° latitude by 1° longitude bins). The derived six parameters (w,b,c,BS0,hS, andθp) for each tile were used to normalize the observed reflectance (standard angles i = g = 60°, e = 0° instead of the traditional angles i = g = 30°, e = 0°) within each tile, resulting in accurate normalization optimized for the local photometric response. Each pixel in the seven-color near-global mosaic (70°S to 70°N and 0°E to 360°E) was computed by the median of normalized reflectance from large numbers of repeated observations (UV: ∼50 and visible: ∼126 on average). The derived mosaic exhibits no significant artifacts with latitude or along the tile boundaries, demonstrating the quality of the normalization procedure. The derived Hapke parameter maps reveal regional photometric response variations across the lunar surface. The b, c (Henyey-Greenstein double-lobed phase function parameters) maps demonstrate decreased backscattering in the maria relative to the highlands (except 321 nm band), probably due to the higher content of both SMFe (submicron iron) and ilmenite in the interiors of back scattering agglutinates in the maria. The hS (angular width of shadow hiding opposition effect) map exhibits relatively lower values in the maria than the highlands and slightly higher values for immature highland crater ejecta, possibly related to the variation in a grain size distribution of regolith.

104 citations


Journal ArticleDOI
01 Jan 2014-Icarus
TL;DR: In this paper, the authors interpret the change in reflectance properties of these regions mainly as disturbance of the regolith by rocket exhaust during descent of the spacecraft and refer to these areas herein as "blast zones" (BZs).

58 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of space weathering at ultraviolet wavelengths using a near-global seven-band (321-689) mosaic from the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) were investigated.
Abstract: We investigate the effects of space weathering at ultraviolet wavelengths using a near-global seven-band (321–689 nm) mosaic from the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC). We confirm that for moderate- to high-iron compositions (≳ 5 wt % FeO), the steeply positive UV slope at wavelengths <415 nm shallows with increasing exposure to space weathering. We measure these differences in LROC WAC data as variations in the 321/415 nm ratio, which has low values for fresh craters in the mare and moderate-iron highlands. For low-iron highland compositions, the break in slope occurs at shorter wavelengths, and it is instead the 321/360 nm ratio that increases with exposure to the space-weathering environment, whereas the 321/415 nm ratio appears to be largely controlled by the degree of shock experienced during the impact. The effects of shock may be more important at highland craters because modest shock pressures result in the solid-state transformation of plagioclase to its glass equivalent, maskelynite, and can help distinguish between primary shocked ejecta and locally exposed fresh material in rays. While all of the “fresh” craters we examined have UV spectral properties consistent with substantial alteration due to space weathering, the UV spectra of lunar swirls (magnetically shielded from the solar wind) are consistent with exposure of immature, crystalline material. Together these results suggest that lunar space weathering is dominated by the solar wind and “saturates” in the UV at Is/FeO values of ~40 (submature).

49 citations