scispace - formally typeset
Search or ask a question

Showing papers by "C. Topfel published in 2009"


BookDOI
Georges Aad, E. Abat1, Brad Abbott, Jalal Abdallah  +2595 moreInstitutions (1)
05 Jan 2009
TL;DR: In this paper, a detailed study of the expected performance of the ATLAS detector is presented, together with the reconstruction of tracks, leptons, photons, missing energy and jets, along with the performance of b-tagging and the trigger.
Abstract: A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.

78 citations


01 May 2009
TL;DR: In this paper, the Hidden-Valley scenario is used for exploring the challenges posed by long-lived particles with long decay paths to the trigger and the reconstruction capabilities of the ATLAS apparatus.
Abstract: Neutral particles with long decay paths that decay to many-particle final states represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS apparatus. The Hidden Valley scenario serves as an excellent setting for the purpose of exploring the challenges to the trigger posed by long-lived particles.

11 citations


Book ChapterDOI
29 Apr 2009
TL;DR: The technical solutions, the usage and the future development of the Swiss ATLAS Grid are presented and about 80 000 wall clock time days have been processed by ATLAS jobs on the Swiss AtlAS Grid.
Abstract: In this paper the technical solutions, the usage and the future development of the Swiss ATLAS Grid are presented. In 2009 the Swiss ATLAS Grid consists of four clusters with about 2000 shared computing cores and about 250 TB of disk space. It is based on middlewares provided by the NorduGrid Collaboration and the EGEE project. It supports multiple virtual organisations and uses additional middleware, developed by the ATLAS collaboration, for data management. The Swiss ATLAS grid is interconnected with both NorduGrid and the Worldwide LHC Grid. This infrastructure primarly serves Swiss research institutions working within the ATLAS experiment at LHC, but is open for about two thousand users on lower priority. The last three years about 80 000 wall clock time days have been processed by ATLAS jobs on the Swiss ATLAS Grid.