scispace - formally typeset
Search or ask a question

Showing papers by "Carrie A. Redlich published in 2011"


Journal ArticleDOI
TL;DR: Work-exacerbated asthma is a common and underrecognized adverse outcome resulting from conditions at work and should be considered in any patient with asthma that is getting worse or who has work-related symptoms.
Abstract: WEA is a common and underrecognized adverse outcome resulting from conditions at work. Additional research is needed to improve the understanding of the risk factors for, and mechanisms and outcomes of, WEA, and to inform and evaluate preventive interventions.

214 citations


Journal ArticleDOI
TL;DR: Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates, and thus, may play an important role in MDI asthma pathogenesis.
Abstract: Background: Methylene diphenyl diisocyanate (MDI), a reactive chemical used for commercial polyurethane production, is a well-recognized cause of occupational asthma. The major focus of disease prevention efforts to date has been respiratory tract exposure; however, skin exposure may also be an important route for inducing immune sensitization, which may promote subsequent airway inflammatory responses. We developed a murine model to investigate pathogenic mechanisms by which MDI skin exposure might promote subsequent immune responses, including respiratory tract inflammation. Methods: Mice exposed via the skin to varying doses (0.1-10% w/v) of MDI diluted in acetone/olive oil were subsequently evaluated for MDI immune sensitization. Serum levels of MDI-specific IgG and IgE were measured by enzyme-linked immunosorbant assay (ELISA), while respiratory tract inflammation, induced by intranasal delivery of MDI-mouse albumin conjugates, was evaluated based on bronchoalveolar lavage (BAL). Autologous serum IgG from “skin only” exposed mice was used to detect and guide the purification/identification of skin proteins antigenically modified by MDI exposure in vivo. Results: Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates. The degree of (secondary) respiratory tract inflammation and eosinophilia depended upon the (primary) skin exposure dose, and was maximal in mice exposed to 1% MDI, but paradoxically limited in mice receiving 10-fold higher doses (e.g. 10% MDI). The major antigenically-modified protein at the local MDI skin exposure site was identified as albumin, and demonstrated biophysical changes consistent with MDI conjugation. Conclusions: MDI skin exposure can induce MDI-specific immune sensitivity and promote subsequent respiratory tract inflammatory responses and thus, may play an important role in MDI asthma pathogenesis. MDI conjugation and antigenic modification of albumin at local (skin/respiratory tract) exposure sites may represent the common antigenic link connecting skin exposure to subsequent respiratory tract inflammation.

37 citations


Journal ArticleDOI
TL;DR: Although low vitamin A status influences the development of lung injury and is considered a possible modifiable risk factor increasing risk of primary cancer, it did not affect the growth of subcutaneous tumors or increase theDevelopment of artificial or spontaneous lung metastases in this rat model.
Abstract: Cancer patients often have subclinical vitamin A deficiencies and low vitamin A lung levels. Previous studies showed that subclinical vitamin A deficiency increased the severity of pneumonitis induced by whole-lung irradiation in rats. Many studies have shown that lung irradiation increases the number of lung tumors developing from intravenously injected tumor cells in mice. We examined the impact of vitamin A deficiency on the development of lung metastases from a highly metastatic syngeneic rat rhabdomyosarcoma in normal rats and rats receiving prior lung irradiation. Weanling female WAGrijY rats were randomized to receive either a diet lacking both vitamin A and beta-carotene or a control diet. After five weeks, the deficient diet significantly decreased levels of retinol in the lung and liver but not in the serum, modeling the tissue and blood levels seen in prior studies of patients with subclinical vitamin A inadequacy. The vitamin A-deficient diet did not alter the number of lung tumors developing from intravenously injected tumor cells in unirradiated rats. Whole-lung irradiation produced dose-dependent increases in the number of lung tumors developing from tumor cells injected intravenously one or 29 d after irradiation. Vitamin A deficiency did not alter these dose-response curves, indicating that the more intense radiation-induced pneumonitis seen previously in vitamin A-deficient rats did not alter the enhancement of metastases produced by whole-lung irradiation. Moreover, inadequate vitamin A intake did not influence the growth of tumors implanted subcutaneously or increase the number or size of the spontaneous lung metastases developing from these subcutaneous tumors. Thus, although low vitamin A status influences the development of lung injury and is considered a possible modifiable risk factor increasing risk of primary cancer, it did not affect the growth of subcutaneous tumors or increase the development of artificial or spontaneous lung metastases in this rat model.

2 citations