scispace - formally typeset
Search or ask a question

Showing papers by "Chi-Cheng Lee published in 2022"


Journal ArticleDOI
TL;DR: In this article , the frequency-dependent and layer-dependent SHG susceptibilities in two-dimensional group-IV monochalcogenides such as GeS, GeSe, SnS, and SnSe were investigated using SHG microscopy.
Abstract: Two-dimensional group-IV monochalcogenides such as GeS, GeSe, SnS, and SnSe were theoretically predicted as multiferroic materials with two or more ferroic properties. However, most of their bulk crystals are stacked layer by layer with an antiferroelectric manner, which lose the macroscopic in-plane ferroelectricity. In this work, we studied SnS in which the layers are stacked in a ferroelectric manner both experimentally and theoretically. We utilized polarization-resolved second harmonic generation (SHG) microscopy to investigate numerous flakes of ferroelectric SnS few layers on mica substrates. We found the SHG polar patterns dramatically varied in the range of 800 nm and 1000 nm due to the frequency-dependent SHG susceptibilities. First-principles calculations have been performed to study the frequency-dependent and layer-dependent SHG susceptibilities in the ferroelectric SnS with AA and AC stacking orders. The variation trend of calculated SHG polar patterns as a function of frequency agrees well with that of the experimental results. Since polarization-resolved SHG is a noncontact and nondestructive technique to determine the crystal orientation, understanding of its properties is important, especially for monitoring the transition of different ferroic phases.

2 citations


DOI
TL;DR: In this article , it was shown that both Si and Ge atoms can form unexpected metallic monolayer structures which are more stable than the extensively studied semimetallic silicene and germanene, respectively.
Abstract: Silicon and germanium are the well-known materials used to manufacture electronic devices for the integrated circuits but they themselves are not considered as promising options for interconnecting the devices due to their semiconducting nature. We have discovered that both Si and Ge atoms can form unexpected metallic monolayer structures which are more stable than the extensively studied semimetallic silicene and germanene, respectively. More importantly, the newly discovered two-dimensional allotropes of Si and Ge have Fermi velocities superior to the Dirac fermions in graphene, indicating that the metal wires needed in the silicon-based integrated circuits can be made of Si atom itself without incompatibility, allowing for all-silicon-based integrated circuits.

1 citations


TL;DR: In this paper , the authors proposed a universal framework for considering interacting relativistic quasiparticles in condensed matter by separating them into energy-like and momentum-like relationships in analogy with the timelike and space-like events in high-energy physics.
Abstract: The intersections of topology, geometry and strong correlations offer many opportunities for exotic quantum phases to emerge in condensed matter systems. Weyl fermions, in particular, provide an ideal platform for exploring the dynamical instabilities of single-particle physics under interactions. Despite its fundamental role in relativistic field theory, the concept of causality and the associated spacetime light cone and event horizon has not been considered in connection with interacting Weyl fermionic excitations in quantum matter. Here, by using charge-density wave (CDW) as an example, we unveil the behavior of interacting Weyl fermions and show that a Weyl fermion in a system can open a band gap by interacting only with other Weyl fermions that lie within its energy-momentum dispersion cone. In this sense, causal connections or interactions are only possible within overlapping dispersion cones and each dispersion cone thus constitutes a solid-state analogue of the more conventional ‘event horizon’ of high-energy physics. Our study provides a universal framework for considering interacting relativistic quasiparticles in condensed matter by separating them into energy-like and momentum-like relationships in analogy with the time-like and space-like events in high-energy physics. Finally, we consider two different candidate materials for hosting the Weyl CDW phase: (TaSe4)2I and Mo3Al2C. Our study greatly enriches the phenomenology and unveils new connections between condensed matter and high-energy physics.

1 citations


02 Nov 2022
TL;DR: In this paper , the authors investigated the role of Fermi surface nesting in causing the charge density wave (CDW) state in 2H-NbSe 2 materials.
Abstract: : The formation of a charge density wave (CDW) in two-dimensional (2D) materials caused by Peierls instability is a controversial topic. This study investigates the extensively debated role of Fermi surface nesting in causing the CDW state in 2H-NbSe 2 materials. Four NbSe 2 structures (i.e., normal, stripe, filled, and hollow structures) are identified on the basis of the characteristics in scanning tunneling microscopy images and first-principles simulations. The calculations reveal that the filled phase corresponds to Peierls’ description; that is, it exhibits fully opened gaps at the CDW Brillouin zone boundary, resulting in a drop at the Fermi level in the density of states and the scanning tunneling spectroscopy spectra. The electronic susceptibility and phonon instability in the normal phase indicate that the Fermi surface nesting is triggered by two nesting vectors, whereas the involvement of only one nesting vector leads to the stripe phase. This comprehensive study demonstrates that the filled phase of NbSe 2 can be categorized as a Peierls-instability-induced CDW in 2D systems.

Journal ArticleDOI
TL;DR: In this article , an energy-momentum analogue of the spacetime light cone by mapping time to energy, space to momentum, and the light cone to the Weyl cone is presented.
Abstract: The spacetime light cone is central to the definition of causality in the theory of relativity. Recently, links between relativistic and condensed matter physics have been uncovered, where relativistic particles can emerge as quasiparticles in the energy-momentum space of matter. Here, we unveil an energy-momentum analogue of the spacetime light cone by mapping time to energy, space to momentum, and the light cone to the Weyl cone. We show that two Weyl quasiparticles can only interact to open a global energy gap if they lie in each other's energy-momentum dispersion cones-analogous to two events that can only have a causal connection if they lie in each other's light cones. Moreover, we demonstrate that the causality of surface chiral modes in quantum matter is entangled with the causality of bulk Weyl fermions. Furthermore, we identify a unique quantum horizon region and an associated 'thick horizon' in the emergent causal structure.