scispace - formally typeset
Search or ask a question

Showing papers by "Chien-Hung Liu published in 2013"


Journal ArticleDOI
TL;DR: It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.
Abstract: The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

21 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a reflective diffraction grating as the medium to develop a multi-DOF incremental optical encoder for motion stage, which measured three angular displacements, roll, yaw and pitch of the motion stage simultaneously, as well as the horizontal straightness and linear displacement, summed to five DOF errors of motion stage by only using the positive and negative first-order diffracted light.
Abstract: This study used a reflective diffraction grating as the medium to develop a multi-DOF incremental optical encoder for motion stage. The optical encoder can measure three angular displacements, roll, yaw and pitch of the motion stage simultaneously, as well as the horizontal straightness and linear displacement, summed to five DOF errors of motion stage by only using the positive and negative first-order diffracted light. The grating diffraction theory, Doppler effect, and optical interference technique were used. Two quadrant photodetectors were used to measure the changes in three-dimensional space of diffraction direction of diffracted light, in order to construct a multi-DOF incremental optical encoder. Considering the working stability of a laser diode and preventing the influence of the zeroth-order diffracted light returning to the laser diode, an additional optical isolation system was designed and a wavelength variation monitoring module was created. The compensation for the light source wavelength variation could be 0.001 nm. The multi-DOF verification results showed that the roll error is ±0.7/60 arcsec, the standard deviation is 0.025 arcsec; the yaw error is ±0.7/30 arcsec, the standard deviation is 0.05 arcsec; the pitch error is ±0.8/90 arcsec, the standard deviation is 0.18 arcsec, the horizontal straightness error is ±0.5/250 μm, the standard deviation is 0.05 μm and the linear displacement error is ±1/20000 μm, the standard deviation is 12 nm.

5 citations