scispace - formally typeset
Search or ask a question

Showing papers by "Chong Luo published in 2019"


Book ChapterDOI
Matej Kristan1, Ales Leonardis2, Jiří Matas3, Michael Felsberg4  +155 moreInstitutions (47)
23 Jan 2019
TL;DR: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative; results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).

639 citations


Proceedings ArticleDOI
Matej Kristan1, Amanda Berg2, Linyu Zheng3, Litu Rout4  +176 moreInstitutions (43)
01 Oct 2019
TL;DR: The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative; results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOTST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" shortterm tracking in RGB, (iii) VOT-LT2019 focused on longterm tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard shortterm, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website.

393 citations


Proceedings ArticleDOI
15 Jun 2019
TL;DR: The greatest challenge facing visual object tracking is the simultaneous requirements on robustness and discrimination power, and a SiamFC-based tracker, named SPM-Tracker, is proposed, to address the two requirements in two separate matching stages.
Abstract: The greatest challenge facing visual object tracking is the simultaneous requirements on robustness and discrimination power. In this paper, we propose a SiamFC-based tracker, named SPM-Tracker, to tackle this challenge. The basic idea is to address the two requirements in two separate matching stages. Robustness is strengthened in the coarse matching (CM) stage through generalized training while discrimination power is enhanced in the fine matching (FM) stage through a distance learning network. The two stages are connected in series as the input proposals of the FM stage are generated by the CM stage. They are also connected in parallel as the matching scores and box location refinements are fused to generate the final results. This innovative series-parallel structure takes advantage of both stages and results in superior performance. The proposed SPM-Tracker, running at 120fps on GPU, achieves an AUC of 0.687 on OTB-100 and an EAO of 0.434 on VOT-16, exceeding other real-time trackers by a notable margin.

192 citations


Posted Content
TL;DR: SPM-Tracker as mentioned in this paper proposes a SiamFC-based tracker, which combines robustness and discrimination power in two separate matching stages, and achieves state-of-the-art performance.
Abstract: The greatest challenge facing visual object tracking is the simultaneous requirements on robustness and discrimination power. In this paper, we propose a SiamFC-based tracker, named SPM-Tracker, to tackle this challenge. The basic idea is to address the two requirements in two separate matching stages. Robustness is strengthened in the coarse matching (CM) stage through generalized training while discrimination power is enhanced in the fine matching (FM) stage through a distance learning network. The two stages are connected in series as the input proposals of the FM stage are generated by the CM stage. They are also connected in parallel as the matching scores and box location refinements are fused to generate the final results. This innovative series-parallel structure takes advantage of both stages and results in superior performance. The proposed SPM-Tracker, running at 120fps on GPU, achieves an AUC of 0.687 on OTB-100 and an EAO of 0.434 on VOT-16, exceeding other real-time trackers by a notable margin.

62 citations


Posted Content
TL;DR: In this paper, a two-stream network is proposed for T-F domain masking, where amplitude stream and phase stream are dedicated to amplitude and phase prediction, respectively, and frequency transformation blocks are used to catch long-range correlations along the frequency axis.
Abstract: Time-frequency (T-F) domain masking is a mainstream approach for single-channel speech enhancement. Recently, focuses have been put to phase prediction in addition to amplitude prediction. In this paper, we propose a phase-and-harmonics-aware deep neural network (DNN), named PHASEN, for this task. Unlike previous methods that directly use a complex ideal ratio mask to supervise the DNN learning, we design a two-stream network, where amplitude stream and phase stream are dedicated to amplitude and phase prediction. We discover that the two streams should communicate with each other, and this is crucial to phase prediction. In addition, we propose frequency transformation blocks to catch long-range correlations along the frequency axis. The visualization shows that the learned transformation matrix spontaneously captures the harmonic correlation, which has been proven to be helpful for T-F spectrogram reconstruction. With these two innovations, PHASEN acquires the ability to handle detailed phase patterns and to utilize harmonic patterns, getting 1.76dB SDR improvement on AVSpeech + AudioSet dataset. It also achieves significant gains over Google's network on this dataset. On Voice Bank + DEMAND dataset, PHASEN outperforms previous methods by a large margin on four metrics.

9 citations


Posted Content
23 Jun 2019
TL;DR: This paper proposes a novel one-shot NAS scheme to explicitly estimate the joint a posteriori distribution over network architecture and weights, and sample networks for evaluation according to it, and reduces the number of sampled sub-networks by orders of magnitude.
Abstract: The emergence of one-shot approaches has greatly advanced the research on neural architecture search (NAS). Recent approaches train an over-parameterized super-network (one-shot model) and then sample and evaluate a number of sub-networks, which inherit weights from the one-shot model. The overall searching cost is significantly reduced as training is avoided for sub-networks. However, the network sampling process is casually treated and the inherited weights from an independently trained super-network perform sub-optimally for sub-networks. In this paper, we propose a novel one-shot NAS scheme to address the above issues. The key innovation is to explicitly estimate the joint a posteriori distribution over network architecture and weights, and sample networks for evaluation according to it. This brings two benefits. First, network sampling under the guidance of a posteriori probability is more efficient than conventional random or uniform sampling. Second, the network architecture and its weights are sampled as a pair to alleviate the sub-optimal weights problem. Note that estimating the joint a posteriori distribution is not a trivial problem. By adopting variational methods and introducing a hybrid network representation, we convert the distribution approximation problem into an end-to-end neural network training problem which is neatly approached by variational dropout. As a result, the proposed method reduces the number of sampled sub-networks by orders of magnitude. We validate our method on the fundamental image classification task. Results on Cifar-10, Cifar-100 and ImageNet show that our method strikes the best trade-off between precision and speed among NAS methods. On Cifar-10, we speed up the searching process by 20x and achieve a higher precision than the best network found by existing NAS methods.

3 citations


Posted Content
TL;DR: A Bayesian approach to the NAS problem, the posterior-guided NAS (PGNAS) avoids tuning a number of hyper-parameters and enables a very effective architecture sampling in posterior probability space and naturally alleviates the mismatch between the sampled architecture and weights caused by the weight sharing.
Abstract: The emergence of neural architecture search (NAS) has greatly advanced the research on network design. Recent proposals such as gradient-based methods or one-shot approaches significantly boost the efficiency of NAS. In this paper, we formulate the NAS problem from a Bayesian perspective. We propose explicitly estimating the joint posterior distribution over pairs of network architecture and weights. Accordingly, a hybrid network representation is presented which enables us to leverage the Variational Dropout so that the approximation of the posterior distribution becomes fully gradient-based and highly efficient. A posterior-guided sampling method is then presented to sample architecture candidates and directly make evaluations. As a Bayesian approach, our posterior-guided NAS (PGNAS) avoids tuning a number of hyper-parameters and enables a very effective architecture sampling in posterior probability space. Interestingly, it also leads to a deeper insight into the weight sharing used in the one-shot NAS and naturally alleviates the mismatch between the sampled architecture and weights caused by the weight sharing. We validate our PGNAS method on the fundamental image classification task. Results on Cifar-10, Cifar-100 and ImageNet show that PGNAS achieves a good trade-off between precision and speed of search among NAS methods. For example, it takes 11 GPU days to search a very competitive architecture with 1.98% and 14.28% test errors on Cifar10 and Cifar100, respectively.

3 citations