scispace - formally typeset
Search or ask a question

Showing papers by "Clark Glymour published in 1993"


Book
01 Jan 1993
TL;DR: The authors axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models.
Abstract: What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences. The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables. The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection. The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

4,863 citations


Book ChapterDOI
01 Jan 1993
TL;DR: A discovery problem is composed of a set of alternative structures, one of which is the source of data, but any of which, for all the investigator knows before the inquiry, could be the structure from which the data are obtained.
Abstract: A discovery problem is composed of a set of alternative structures, one of which is the source of data, but any of which, for all the investigator knows before the inquiry, could be the structure from which the data are obtained. There is something to be found out about the actual structure, whichever it is. It may be that we want to settle a particular hypothesis that is true in some of the possible structures and false in others, or it may be that we want to know the complete theory of a certain sort of phenomenon. In this book, and in much of the social sciences and epidemiology, the alternative structures in a discovery problem are typically directed acyclic graphs paired with joint probability distributions on their vertices. We usually want to know something about the structure of the graph that represents causal influences, and we may also want to know about the distribution of values of variables in the graph for a given population.

15 citations


Book ChapterDOI
01 Jan 1993
TL;DR: In this article, the authors make explicit their assumptions connecting causal structure with probability, counterfactuals and manipulations, and they advocate no definition of causation, but they try to make their usage systematic.
Abstract: Views about the nature of causation divide very roughly into those that analyze causal influence as some sort of probabilistic relation, those that analyze causal influence as some sort of counterfactual relation (sometimes a counterfactual relation having to do with manipulations or interventions), and those that prefer not to talk of causation at all. We advocate no definition of causation, but in this chapter we try to make our usage systematic, and to make explicit our assumptions connecting causal structure with probability, counterfactuals and manipulations. With suitable metaphysical gyrations the assumptions could be endorsed from any of these points of view, perhaps including even the last.

5 citations


Book ChapterDOI
01 Jan 1993
TL;DR: In this paper, it is assumed that the measured variables (e.g., responses to questionnaire items) are not themselves the causes of unmeasured variables of interest (i.e., attitude).
Abstract: Many theories suppose there are variables that have not been measured but that influence measured variables. In studies in econometrics, psychometrics, sociology and elsewhere the principal aim may be to uncover the causal relations among such “latent” variables. In such cases it is usually assumed that one knows that the measured variables (e.g., responses to questionnaire items) are not themselves causes of unmeasured variables of interest (e.g., attitude), and the measuring instruments are often designed with fairly definite ideas as to which measured items are caused by which unmeasured variables. Survey questionnaires may involve hundreds of items, and the very number of variables is ordinarily an impediment to drawing useful conclusions about structure. Although there are a number of procedures commonly used for such problems, their reliability is doubtful. A common practice, for example, is to form aggregated scales by averaging measures of variables that are held to be proxies for the same unmeasured variable, and then to study the correlations of the scales. The correlations thus obtained have no simple systematic connection with causal relations among the unmeasured variables.

3 citations


01 Jan 1993

3 citations


Book ChapterDOI
01 Jan 1993
TL;DR: The textbooks consider cases where policy interventions are at issue, but they tell us nothing systematic about the connections between statistical analysis of observations or experiments and predictions of the effects of policies, actions or manipulations.
Abstract: Statistics textbooks provide interesting examples of causal questions: Did halothane do more to cause surgical deaths than ether? Was the lower admission rate of women to graduate programs at the University of California caused by discrimination against women? Does smoking cause cancer? Issues about determining causes surround many of the introductory and even advanced topics in statistical pedagogy: experimental design, randomization, collinearity in multiple regression, observational versus experimental studies, and so forth. But except for the standard warnings that correlation is not causation, the textbooks include little if any systematic discussion of the connection between causation and probability. The mathematics of probability and statistical inference is explicit, but the connection between probability relations and causal dependencies is almost completely tacit. The same applies to prediction, at least outside of econometrics. The textbooks consider cases where policy interventions are at issue, but they tell us nothing systematic about the connections between statistical analysis of observations or experiments and predictions of the effects of policies, actions or manipulations.

3 citations


Book ChapterDOI
01 Jan 1993
TL;DR: The problems of causal inference in regression studies are instances of the problems the authors have considered in the previous chapters, and the solutions are to be found there as well.
Abstract: Regression is a special case, not a special subject The problems of causal inference in regression studies are instances of the problems we have considered in the previous chapters, and the solutions are to be found there as well What is singular about regression is only that a technique so ill suited to causal inference should have found such wide employment to that purpose

3 citations



Book ChapterDOI
01 Jan 1993
TL;DR: The preceding chapter complied with a common statistical fantasy, namely that in typical data sets it is known that no part of the statistical dependencies among measured variables are due to unmeasured common causes.
Abstract: The preceding chapter complied with a common statistical fantasy, namely that in typical data sets it is known that no part of the statistical dependencies among measured variables are due to unmeasured common causes. We almost always fail to measure all of the causes of variables we do measure, and we often fail to measure variables that are causes of two or more measured variables. Any examination of collections of social science data gives the striking impression that variables in one study often seem relevant to those in other studies. Record keeping practices sometimes force econometricians to ignore variables in studies of one economy thought to have a causal role in studies of other economies (Klein, 1961). In many studies in psychometrics, social psychology and econometrics, the real variables of interest are unmeasured or measured only by proxies or “indicators.” In epidemiological studies that claim to show that exposure to a risk factor causes disease, a burden of the argument is to show that the statistical association is not due to some common cause of risk factor and disease; since not everything imaginably relevant can be measured, the argument is radically incomplete unless a case can be made that unmeasured variables do not “confound” the association. If, as we believe, no reliable empirical study can proceed without considering whether relevant variables are unmeasured, then few published uncontrolled empirical studies are reliable.

1 citations