scispace - formally typeset
Search or ask a question

Showing papers by "Claudio Bettini published in 2021"


Journal ArticleDOI
TL;DR: This paper proposes POLARIS, a framework for unsupervised activity recognition that can recognize complex ADLs exploiting the semantics of activities, context data, and sensors and achieves essentially the same accuracy of the offline version.
Abstract: Recognition of activities of daily living (ADLs) is an enabling technology for several ubiquitous computing applications. Most activity recognition systems rely on supervised learning to extract activity models from labeled datasets. A problem with that approach is the acquisition of comprehensive activity datasets, which is an expensive task. The problem is particularly challenging when focusing on complex ADLs characterized by large variability of execution. Moreover, several activity recognition systems are limited to offline recognition, while many applications claim for online activity recognition. In this paper, we propose POLARIS, a framework for unsupervised activity recognition. POLARIS can recognize complex ADLs exploiting the semantics of activities, context data, and sensors. Through ontological reasoning, our algorithm derives semantic correlations among activities and sensor events. By matching observed events with semantic correlations, a statistical reasoner formulates initial hypotheses about the occurred activities. Those hypotheses are refined through probabilistic reasoning, exploiting semantic constraints derived from the ontology. Our system supports online recognition, thanks to a novel segmentation algorithm. Extensive experiments with real-world datasets show that the accuracy of our unsupervised method is comparable to the one of supervised approaches. Moreover, the online version of our system achieves essentially the same accuracy of the offline version.

15 citations


Proceedings ArticleDOI
22 Mar 2021
TL;DR: This work proposes a novel approach for eXplainable Activity Recognition (XAR) based on interpretable machine learning models that generates explanations by combining the feature values with the feature importance obtained from the underlying trained classifier.
Abstract: The majority of the approaches to sensor-based activity recognition are based on supervised machine learning. While these methods reach high recognition rates, a major challenge is to understand the rationale behind the predictions of the classifier. Indeed, those predictions may have a relevant impact on the follow-up actions taken in a smart living environment. We propose a novel approach for eXplainable Activity Recognition (XAR) based on interpretable machine learning models. We generate explanations by combining the feature values with the feature importance obtained from the underlying trained classifier. A quantitative evaluation on a real dataset of ADLs shows that our method is effective in providing explanations consistent with common knowledge. By comparing two popular ML models, our results also show that one versus one classifiers can provide better explanations in our framework.

6 citations


Posted Content
TL;DR: FedHAR as discussed by the authors combines active learning and label propagation to semi-automatically annotate the local streams of unlabeled sensor data, and it relies on FL to build a global activity model in a scalable and privacy-aware fashion.
Abstract: The most effective data-driven methods for human activities recognition (HAR) are based on supervised learning applied to the continuous stream of sensors data. However, these methods perform well on restricted sets of activities in domains for which there is a fully labeled dataset. It is still a challenge to cope with the intra- and inter-variability of activity execution among different subjects in large scale real world deployment. Semi-supervised learning approaches for HAR have been proposed to address the challenge of acquiring the large amount of labeled data that is necessary in realistic settings. However, their centralised architecture incurs in the scalability and privacy problems when the process involves a large number of users. Federated Learning (FL) is a promising paradigm to address these problems. However, the FL methods that have been proposed for HAR assume that the participating users can always obtain labels to train their local models. In this work, we propose FedHAR: a novel hybrid method for HAR that combines semi-supervised and federated learning. Indeed, FedHAR combines active learning and label propagation to semi-automatically annotate the local streams of unlabeled sensor data, and it relies on FL to build a global activity model in a scalable and privacy-aware fashion. FedHAR also includes a transfer learning strategy to personalize the global model on each user. We evaluated our method on two public datasets, showing that FedHAR reaches recognition rates and personalization capabilities similar to state-of-the-art FL supervised approaches. As a major advantage, FedHAR only requires a very limited number of annotated data to populate a pre-trained model and a small number of active learning questions that quickly decrease while using the system, leading to an effective and scalable solution for the data scarcity problem of HAR.

3 citations



Book ChapterDOI
01 Jan 2021