scispace - formally typeset
Search or ask a question

Showing papers by "Cynthia J. Meininger published in 2021"


Book ChapterDOI
TL;DR: As a functional amino acid (AA), Larginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginines, and agmatine in mammals as discussed by the authors.
Abstract: As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.

56 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that dietary supplementation with larginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown.
Abstract: Dietary supplementation with 0.4 or 0.8% l-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn–soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.

8 citations


Book ChapterDOI
TL;DR: In this article, a food frequency questionnaire was completed by healthy adult men and women at days 0 and 90 of the study, and data from the food questionnaire were analyzed with a nutrient analysis program (www.Harvardsffq.date).
Abstract: Measuring usual dietary intake in freely living humans is difficult to accomplish. As a part of our recent study, a food frequency questionnaire was completed by healthy adult men and women at days 0 and 90 of the study. Data from the food questionnaire were analyzed with a nutrient analysis program (www.Harvardsffq.date). Healthy men and women consumed protein as 19–20% and 17–19% of their total energy intakes, respectively, with animal protein representing about 75 and 70% of their total protein intakes, respectively. The intake of each nutritionally essential amino acid (EAA) by the persons exceeded that recommended for healthy adults with a minimal physical activity. In all individuals, the dietary intake of leucine was the highest, followed by lysine, valine, and isoleucine in descending order, and the ingestion of amino acids that are synthesizable de novo in animal cells (AASAs) was about 20% greater than that of total EAAs. The intake of each AASA met those recommended for healthy adults with a minimal physical activity. Intakes of some AASAs (alanine, arginine, aspartate, glutamate, and glycine) from a typical diet providing 90–110 g food protein/day does not meet the requirements of adults with an intensive physical activity. Within the male or female group, there were not significant differences in the dietary intakes of all amino acids between days 0 and 90 of the study, and this was also true for nearly all other essential nutrients. Our findings will help to improve amino acid nutrition and health in both the general population and exercising individuals.

4 citations