scispace - formally typeset
Search or ask a question

Showing papers by "Daphne R. Goring published in 1992"


Journal ArticleDOI
TL;DR: Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases.
Abstract: An S-receptor kinase (SRK) cDNA, SRK-910, from the active S-locus in a self-incompatible Brassica napus W1 line has been isolated and characterized. The SRK-910 gene is predominantly expressed in pistils and segregates with the W1 self-incompatibility phenotype in an F2 population derived from a cross between the self-incompatible W1 line and a self-compatible Westar line. Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases. An SRK-910 kinase protein fusion was produced in Escherichia coli and found to contain kinase activity. Phosphoamino acid analysis confirmed that only serine and threonine residues were phosphorylated. Thus, the SRK-910 gene encodes a functional serine/threonine receptor kinase.

189 citations


Journal ArticleDOI
TL;DR: RNA blot analysis indicated that high levels of 910 mRNAs were present in the stigma as buds approached anthesis, and the SLG allele of W1 transferred from B. campestris via backcrosses to a line of cv.
Abstract: A self-incompatible canola-quality Brassica napus ssp. oleifera line (W1) was generated by introgressing the S-locus from a self-incompatible B. campestris plant into the Westar cultivar. Using the polymerase chain reaction (PCR) with primers derived from conserved regions in S-locus glycoprotein (SLG) alleles, the central region of the active SLG gene (910) was obtained. The remaining portions of the cDNA for this 910 gene were subsequently cloned using the PCR-rapid amplification of cDNA ends (RACE) procedure. Sequence analysis revealed that the 910 cDNA show a high degree of sequence similarity to SLG alleles associated with Class I self-incompatible lines. The 910 gene was found to be absent in the original self-compatible cv. Westar (B. napus) and segregated with self-incompatibility in a mixed population generated from a cross between self-incompatible W1 and self-compatible Westar. RNA blot analysis indicated that high levels of 910 mRNAs were present in the stigma as buds approached anthesis. Thus, the SLG allele of W1 transferred from B. campestris via backcrosses to a line of cv. Westar has been identified.

54 citations


Journal ArticleDOI
TL;DR: While all six gamma-crystallin genes were expressed in the embryonic lens, they were differentially regulated during development and the utility of the PCR technique in studying the relative abundance of steady-state gamma- Crystallin mRNAs was investigated.

49 citations


Journal ArticleDOI
TL;DR: Screening of a cDNA library made from R2 stigma RNA produced several candidate SLG (S-locus glycoprotein) cDNAs, and sequence analysis of the A14 cDNA revealed close homology to B. oleracea SLG alleles associated with a Class I high activity self-incompatibility phenotype.
Abstract: Self-incompatible Brassica napus ssp. oleifera lines were generated by introgressing the S-locus from the self-incompatible B. napus ssp. rapifera Z line into the self-compatible cultivars, Topas and Regent, resulting in T2 and R2, respectively. Screening of a cDNA library made from R2 stigma RNA produced several candidate SLG (S-locus glycoprotein) cDNAs. One of the cDNAs, A14, was found to be represented in only the R2, T2 and Z lines. In addition, the corresponding A14 gene was demonstrated to segregate with the T2 self-incompatibility phenotype in an F2 population derived from a cross between T2 and Topas, and to exhibit high mRNA levels in the stigmas prior to anthesis. Sequence analysis of the A14 cDNA revealed close homology to B. oleracea SLG alleles associated with a Class I high activity self-incompatibility phenotype.

33 citations