scispace - formally typeset
Search or ask a question

Showing papers by "David C. Fritts published in 2023"


Journal ArticleDOI
TL;DR: In this article , the authors systematically screen the BOLIDE dataset for small-scale variability by assessing these gradients at high resolution, finding longer tails of the probability density distributions of these gradient distributions compared to a normal distribution, indicating intermittent behaviour.
Abstract: Abstract. The Balloon Lidar Experiment (BOLIDE), which was part of the Polar Mesospheric Cloud Turbulence (PMC Turbo) Balloon Mission has captured vertical profiles of PMCs during a 6 d flight along the Arctic circle in July 2018. The high-resolution soundings (20 m vertical and 10 s temporal resolution) reveal highly structured layers with large gradients in the volume backscatter coefficient. We systematically screen the BOLIDE dataset for small-scale variability by assessing these gradients at high resolution. We find longer tails of the probability density distributions of these gradients compared to a normal distribution, indicating intermittent behaviour. The high occurrence rate of large gradients is assessed in relation to the 15 min averaged layer brightness and the spectral power of short-period (5–62 min) gravity waves based on PMC layer altitude variations. We find that variability on small scales occurs during weak, moderate, and strong gravity wave activity. Layers with below-average brightness are less likely to show small-scale variability in conditions of strong gravity wave activity. We present and discuss the signatures of this small-scale variability, and possibly related dynamical processes, and identify potential cases for future case studies and modelling efforts.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the results of the GW-LCYCLE II campaign, conducted in Jan/Feb 2016 from Kiruna, Sweden, coherent Doppler wind lidar measurements were performed from the DLR Falcon aircraft to investigate gravity waves induced by flow across the Scandinavian Alps.
Abstract: Abstract. In the course of the GW-LCYCLE II campaign, conducted in Jan/Feb 2016 from Kiruna, Sweden, coherent Doppler wind lidar (2 µm DWL) measurements were performed from the DLR Falcon aircraft to investigate gravity waves induced by flow across the Scandinavian Alps. During a mountain wave event on 28 January 2016, a novel momentum flux (MF) scan pattern with fore and aft propagating laser beams was applied to the 2 µm DWL. This allows us to measure the vertical wind and the horizontal wind along the flight track simultaneously with a high horizontal resolution of ≈800 m and hence enables us to derive the horizontal MF profile for a broad wavelength spectrum from a few hundred meters to several hundred kilometers. The functionality of this method and the corresponding retrieval algorithm is validated using a comparison against in situ wind data measured by the High Altitude and Long Range (HALO) aircraft which was also deployed in Kiruna for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. Based on that, the systematic and random error of the wind speeds retrieved from the 2 µm DWL observations are determined. Further, the measurements performed on that day are used to reveal significant changes in the horizontal wavelengths of the vertical wind speed and of the leg-averaged momentum fluxes in the tropopause inversion layer (TIL) region, which are likely to be induced by interfacial waves as recently presented by Gisinger et al. (2020).

1 citations


TL;DR: In this article , the authors proposed a method to solve the problem of the problem: this article ] of "uniformity" of the distribution of data points in the data set.
Abstract: Abstract

Journal ArticleDOI
TL;DR: In this paper , the authors performed a high-resolution compressible simulation to explore the emission of GWs by interacting Kelvin-Helmholtz instability (KHI) billows and resulting tube and knot (T&K) dynamics.
Abstract: Fritts, Wang, Lund, and Thorpe (2022, https://doi.org/10.1017/jfm.2021.1085) and Fritts, Wang, Thorpe, and Lund (2022, https://doi.org/10.1017/jfm.2021.1086) described a 3‐dimensional direct numerical simulation of interacting Kelvin‐Helmholtz instability (KHI) billows and resulting tube and knot (T&K) dynamics that arise at a stratified shear layer defined by an idealized, large‐amplitude inertia‐gravity wave. Using similar initial conditions, we performed a high‐resolution compressible simulation to explore the emission of GWs by these dynamics. The simulation confirms that such shear can induce strong KHI with large horizontal scales and billow depths that readily emit GWs having high frequencies, small horizontal wavelengths, and large vertical group velocities. The density‐weighted amplitudes of GWs reveal “fishbone” structures in vertical cross sections above and below the KHI source. Our results reveal that KHI, and their associated T&K dynamics, may be an important additional source of high‐frequency, small‐scale GWs at higher altitudes.

Journal ArticleDOI
TL;DR: In this paper , the results of an idealized direct numerical simulation of multi-scale gravity wave dynamics that reveals multiple larger and smaller-scale Kelvin-Helmholtz instability (KHI T&K) events are presented.
Abstract: A companion paper by Fritts et al. (2023a) reviews evidence for Kelvin-Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics that appear to be widespread throughout the atmosphere. Here we describe the results of an idealized direct numerical simulation of multi-scale gravity wave dynamics that reveals multiple larger- and smaller-scale KHI T&K events. The results enable assessments of the environments in which these dynamics arise and their competition with concurrent gravity wave breaking in driving turbulence and energy dissipation. A larger-scale event is diagnosed in detail and reveals diverse and intense T&K dynamics driving more intense turbulence than occurs due to gravity wave breaking in the same environment. Smaller-scale events reveal that KHI T&K dynamics readily extend to weaker, smaller-scale, and increasingly viscous shear flows. Our results suggest that KHI T&K dynamics should be widespread, perhaps ubiquitous, wherever superposed gravity waves induce intensifying shear layers, because such layers are virtually always present. A second companion paper (Fritts et al. 2023b) demonstrates that KHI T&K dynamics exhibit elevated turbulence generation and energy dissipation rates extending to smaller Reynolds numbers for relevant KHI scales wherever they arise. These dynamics are suggested to be significant sources of turbulence and mixing throughout the atmosphere that are currently ignored or under-represented in turbulence parameterizations in regional and global models.

Journal ArticleDOI
TL;DR: In this article , the authors survey recent observational evidence of multi-scale Kelvin-Helmholtz instabilities throughout the atmosphere, many features of which closely resemble T&K dynamics observed in the laboratory and idealized initial modeling.
Abstract: Multiple recent observations in the mesosphere have revealed large-scale Kelvin-Helmholtz instabilities (KHI) exhibiting diverse spatial features and temporal evolutions. The first event reported by Hecht et al. (2021) exhibited multiple features resembling those seen to arise in early laboratory shear-flow studies described as “Tube” and “Knot” (T&K) dynamics by Thorpe (1985, 1987). The potential importance of T&K dynamics in the atmosphere, and in the oceans and other stratified and sheared fluids, is due to their accelerated turbulence transitions and elevated energy dissipation rates relative to KHI turbulence transitions occurring in their absence. Motivated by these studies, we survey recent observational evidence of multi-scale Kelvin-Helmholtz instabilities throughout the atmosphere, many features of which closely resemble T&K dynamics observed in the laboratory and idealized initial modeling. These efforts will guide further modeling assessing the potential importance of these T&K dynamics in turbulence generation, energy dissipation, and mixing throughout the atmosphere and other fluids. We expect these dynamics to have implications for parameterizing mixing and transport in stratified shear flows in the atmosphere and oceans that have not been considered to date. Companion papers describe results of a multi-scale gravity wave direct numerical simulation (DNS) that serendipitously exhibits a number of KHI T&K events and an idealized multi-scale DNS of KHI T&K dynamics without gravity wave influences.