scispace - formally typeset
Search or ask a question

Showing papers by "David E. Manolopoulos published in 2009"


Journal ArticleDOI
TL;DR: A new simple point charge model for liquid water, q-TIP4P/F, is introduced, in which the O-H stretches are described by Morse-type functions, and it is found that quantum mechanical fluctuations increase the rates of translational diffusion and orientational relaxation in the model by a factor of around 1.15.
Abstract: Numerous studies have identified large quantum mechanical effects in the dynamics of liquid water. In this paper, we suggest that these effects may have been overestimated due to the use of rigid water models and flexible models in which the intramolecular interactions were described using simple harmonic functions. To demonstrate this, we introduce a new simple point charge model for liquid water, q-TIP4P/F, in which the O-H stretches are described by Morse-type functions. We have parametrized this model to give the correct liquid structure, diffusion coefficient, and infrared absorption frequencies in quantum (path integral-based) simulations. The model also reproduces the experimental temperature variation of the liquid density and affords reasonable agreement with the experimental melting temperature of hexagonal ice at atmospheric pressure. By comparing classical and quantum simulations of the liquid, we find that quantum mechanical fluctuations increase the rates of translational diffusion and orientational relaxation in our model by a factor of around 1.15. This effect is much smaller than that observed in all previous simulations of empirical water models, which have found a quantum effect of at least 1.4 regardless of the quantum simulation method or the water model employed. The small quantum effect in our model is a result of two competing phenomena. Intermolecular zero point energy and tunneling effects destabilize the hydrogen-bonding network, leading to a less viscous liquid with a larger diffusion coefficient. However, this is offset by intramolecular zero point motion, which changes the average water monomer geometry resulting in a larger dipole moment, stronger intermolecular interactions, and a slower diffusion. We end by suggesting, on the basis of simulations of other potential energy models, that the small quantum effect we find in the diffusion coefficient is associated with the ability of our model to produce a single broad O-H stretching band in the infrared absorption spectrum.

480 citations


Journal ArticleDOI
TL;DR: The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature.
Abstract: The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.

142 citations


Journal ArticleDOI
TL;DR: An efficient procedure for calculating the rates of bimolecular chemical reactions in the gas phase within the ring polymer molecular dynamics approximation, which is illustrated with applications to the three-dimensional H + H(2), Cl + HCl, and F + H
Abstract: We describe an efficient procedure for calculating the rates of bimolecular chemical reactions in the gas phase within the ring polymer molecular dynamics approximation. A key feature of the procedure is that it does not require that one calculate the absolute quantum mechanical partition function of the reactants or the transition state: The rate coefficient only depends on the ratio of these two partition functions which can be obtained from a thermodynamic integration along a suitable reaction coordinate. The procedure is illustrated with applications to the three-dimensional H + H(2), Cl + HCl, and F + H(2) reactions, for which well-converged quantum reactive scattering results are computed for comparison. The ring polymer rate coefficients agree with these exact results at high temperatures and are within a factor of 3 of the exact results at temperatures in the deep quantum tunneling regime, where the classical rate coefficients are too small by several orders of magnitude. This is probably already good enough to encourage future applications of the ring polymer theory to more complex chemical reactions, which it is capable of treating in their full dimensionality. However, there is clearly some scope for improving on the ring polymer approximation at low temperatures, and we end by suggesting a way in which this might be accomplished.

139 citations


Journal ArticleDOI
TL;DR: The development consists of iterating the induction on the contracted ring polymer and applying an appropriate transformation to obtain the forces on the original n beads, which results in a method with little more than classical computational effort in the limit of large system size.
Abstract: A quantum simulation of an imaginary time path integral typically requires around n times more computational effort than the corresponding classical simulation, where n is the number of ring polymer beads (or imaginary time slices) used in the calculation. It is however possible to improve on this estimate by decomposing the potential into a sum of slowly and rapidly varying contributions. If the slowly varying contribution changes only slightly over the length scale of the ring polymer, it can be evaluated on a contracted ring polymer with fewer than the full n beads (or equivalently on a lower order Fourier decomposition of the imaginary time path). Here we develop and test this idea for systems with polarizable force fields. The development consists of iterating the induction on the contracted ring polymer and applying an appropriate transformation to obtain the forces on the original n beads. In combination with a splitting of the Coulomb potential into its short- and long-range parts, this results in a method with little more than classical computational effort in the limit of large system size. The method is illustrated with simulations of liquid water at 300 K and hexagonal ice at 100 K using a recently developed flexible and polarizable Thole-type potential energy model.

53 citations