scispace - formally typeset
Search or ask a question

Showing papers by "Diego Ruano published in 2007"


Journal ArticleDOI
TL;DR: Present results strongly support the neuroinflammation as a potential factor involved in the age‐related degeneration of somatostatin GABAergic cells.
Abstract: Increased neuroinflammatory reaction is frequently observed during normal brain aging. However, a direct link between neuroinflammation and neurodegeneration during aging has not yet been clearly shown. Here, we have characterized the age-related hippocampal inflammatory processes and the potential relation with hippocampal neurodegeneration. The mRNA expression of the pro-inflammatory cytokines IL-1beta and tumor necrosis factor-alpha (TNF-alpha), and the iNOs enzyme was significantly increased in aged hippocampus. Accordingly, numerous activated microglial cells were observed in aged rats. These cells were differentially distributed along the hippocampus, being more frequently located in the hilus and the CA3 area. The mRNA expression of somatostatin, a neuropeptide expressed by some GABAergic interneurons, and the number of somatostatin-immunopositive cells decreased in aged rats. However, the number of hippocampal parvalbumin-containing GABAergic interneurons was preserved. Interestingly, in aged rats, the mRNA expression of somatostatin and IL-1beta was inversely correlated and, the decrease in the number of somatostatin-immunopositive cells was higher in the hilus of dentate gyrus than in the CA1 region. Finally, intraperitoneal chronic lipopolysaccharide (LPS) injection in young animals mimicked the age-related hippocampal inflammation as well as the decrease of somatostatin mRNA expression. Present results strongly support the neuroinflammation as a potential factor involved in the age-related degeneration of somatostatin GABAergic cells.

65 citations


Journal ArticleDOI
TL;DR: Results showed the existence of a large variability in the Aβ deposition in both hippocampus and cortex in 6‐month‐old PS1xAPP mice, which might implicate an “apparent gain‐of‐function” of the γ‐secretase complex by the expression of the mutated PS1M146L.
Abstract: The detection of the early phenotypic modifications of Alzheimer's disease (AD) models is fundamental to understand the progression and identify pharmacologic targets of this pathology. However, a large variability within different models and between age-matched mice from the same model has been observed. This variability could be due to heterogeneity in the Abeta production. Present results showed the existence of a large variability in the Abeta deposition in both hippocampus and cortex in 6-month-old PS1xAPP mice. This variability was not due to the expression of hAPP751SL, however, linear relationship between hPS1M146L mRNA and Abeta production was identified. The Abeta content was related to the incorporation of the hPS1M146L into functional gamma-secretase complexes, detected by the presence of the corresponding human or endogenous PS1-CTFs. Animals expressing low amount of hPS1M146L mRNA, displayed low hPS1-CTF incorporation and produced a low amount of Abeta peptides. Conversely, mice with relatively high hPS1 mRNA expression displayed high hPS1-CTF and high Abeta deposition. Furthermore, the Abeta total and Abeta1-42 content was increased dramatically by the expression of hPS1M146L (as compared with transgenic APPsl littermates). Therefore, variations in the expression of transgenic form of hPS1M146L in this model, or even between different models, influenced strongly the incorporation of the mutated PS1 into functional gamma-secretase complexes, the production of Abeta peptides and, in consequence, the detrimental effects of Abeta peptides. These data might implicate an "apparent gain-of-function" of the gamma-secretase complex by the expression of the mutated PS1M146L.

8 citations