scispace - formally typeset
Search or ask a question

Showing papers by "Dimitrios Georgakopoulos published in 2016"


Proceedings ArticleDOI
01 Dec 2016
TL;DR: IoT-based contextualisation techniques that effectively consider the entire range of data that is being collected in smart cities and use such data to provide hyper-personalised information to each user, i.e., information that best suits the context of each user in the Smart City are proposed.
Abstract: The Internet of Things (IoT) plays an important role in the development of smart cities. In this paper we focus on the development of IoT-based smart services for solving urban problems that involve IoT-enabled Observation, Orientation, Decision, and Action (OODA) loops. We also focus on how to efficiently support such OODA loops in situations where such loops involve internet-scale data. More specifically, IoT supports Observation via the discovery of sensors and the integration of their data. It supports Orientation via a contextualisation process that refines such data to include only those that are relevant to the situation and/or activities of each specific individual or group. As IoT contextualisation potentially involves internet-scale data, performing this process efficiently allows for fast decision making, and this in turn permits carrying out a timely Action. In this paper we propose an approach and related techniques for performing internet-scale data contextualisation. In particular, we propose IoT-based contextualisation techniques that effectively consider the entire range of data that is being collected in smart cities and use such data to provide hyper-personalised information to each user, i.e., information that best suits the context of each user in the Smart City. We exemplify the proposed contextualisation solution in a smart parking space recommender application/service, and provide an experimental evaluation of this service to illustrate the benefits of our solution.

30 citations


Posted Content
TL;DR: In this paper, an innovative hierarchical data processing architecture that utilises semantics at all the levels of IoT stack in multicloud environments is presented, and the authors demonstrate the feasibility of such architecture by building a system based on this architecture using OpenIoT as a middleware, and Google Cloud and Microsoft Azure as cloud environments.
Abstract: A large number of cloud middleware platforms and tools are deployed to support a variety of Internet of Things (IoT) data analytics tasks. It is a common practice that such cloud platforms are only used by its owners to achieve their primary and predefined objectives, where raw and processed data are only consumed by them. However, allowing third parties to access processed data to achieve their own objectives significantly increases integration, cooperation, and can also lead to innovative use of the data. Multicloud, privacy-aware environments facilitate such data access, allowing different parties to share processed data to reduce computation resource consumption collectively. However, there are interoperability issues in such environments that involve heterogeneous data and analytics-as-a-service providers. There is a lack of both - architectural blueprints that can support such diverse, multi-cloud environments, and corresponding empirical studies that show feasibility of such architectures. In this paper, we have outlined an innovative hierarchical data processing architecture that utilises semantics at all the levels of IoT stack in multicloud environments. We demonstrate the feasibility of such architecture by building a system based on this architecture using OpenIoT as a middleware, and Google Cloud and Microsoft Azure as cloud environments. The evaluation shows that the system is scalable and has no significant limitations or overheads.

5 citations