scispace - formally typeset
Search or ask a question

Showing papers by "Eero P. Simoncelli published in 2017"


Journal ArticleDOI
TL;DR: A framework for rendering photographic images by directly optimizing their perceptual similarity to the original visual scene is developed, yielding results of comparable visual quality to current state-of-the-art methods, but without manual intervention or parameter adjustment.
Abstract: We develop a framework for rendering photographic images by directly optimizing their perceptual similarity to the original visual scene. Specifically, over the set of all images that can be rendered on a given display, we minimize the normalized Laplacian pyramid distance (NLPD), a measure of perceptual dissimilarity that is derived from a simple model of the early stages of the human visual system. When rendering images acquired with a higher dynamic range than that of the display, we find that the optimization boosts the contrast of low-contrast features without introducing significant artifacts, yielding results of comparable visual quality to current state-of-the-art methods, but without manual intervention or parameter adjustment. We also demonstrate the effectiveness of the framework for a variety of other display constraints, including limitations on minimum luminance (black point), mean luminance (as a proxy for energy consumption), and quantized luminance levels (halftoning). We show that the method may generally be used to enhance details and contrast, and, in particular, can be used on images degraded by optical scattering (e.g., fog). Finally, we demonstrate the necessity of each of the NLPD components-an initial power function, a multiscale transform, and local contrast gain control-in achieving these results and we show that NLPD is competitive with the current state-of-the-art image quality metrics.

64 citations


Journal ArticleDOI
TL;DR: It is shown that choice-related activity in sensory neurons can be highly variable across observers and can reflect modulatory processes that are dissociated from perceptual decision-making.
Abstract: Responses of individual task-relevant sensory neurons can predict monkeys' trial-by-trial choices in perceptual decision-making tasks. Choice-correlated activity has been interpreted as evidence that the responses of these neurons are causally linked to perceptual judgments. To further test this hypothesis, we studied responses of orientation-selective neurons in V1 and V2 while two macaque monkeys performed a fine orientation discrimination task. Although both animals exhibited a high level of neuronal and behavioral sensitivity, only one exhibited choice-correlated activity. Surprisingly, this correlation was negative: when a neuron fired more vigorously, the animal was less likely to choose the orientation preferred by that neuron. Moreover, choice-correlated activity emerged late in the trial, earlier in V2 than in V1, and was correlated with anticipatory signals. Together, these results suggest that choice-correlated activity in task-relevant sensory neurons can reflect postdecision modulatory signals. SIGNIFICANCE STATEMENT When observers perform a difficult sensory discrimination, repeated presentations of the same stimulus can elicit different perceptual judgments. This behavioral variability often correlates with variability in the activity of sensory neurons driven by the stimulus. Traditionally, this correlation has been interpreted as suggesting a causal link between the activity of sensory neurons and perceptual judgments. More recently, it has been argued that the correlation instead may originate in recurrent input from other brain areas involved in the interpretation of sensory signals. Here, we call both hypotheses into question. We show that choice-related activity in sensory neurons can be highly variable across observers and can reflect modulatory processes that are dissociated from perceptual decision-making.

40 citations


Proceedings Article
01 Jan 2017
TL;DR: In this article, the authors used Fisher information to establish a model-derived prediction of sensitivity to local perturbations of an image, and computed the eigenvectors of the Fisher information matrix with largest and smallest eigenvalues, corresponding to the model-predicted most and leastnoticeable image distortions.
Abstract: We develop a method for comparing hierarchical image representations in terms of their ability to explain perceptual sensitivity in humans. Specifically, we utilize Fisher information to establish a model-derived prediction of sensitivity to local perturbations of an image. For a given image, we compute the eigenvectors of the Fisher information matrix with largest and smallest eigenvalues, corresponding to the model-predicted most- and least-noticeable image distortions, respectively. For human subjects, we then measure the amount of each distortion that can be reliably detected when added to the image. We use this method to test the ability of a variety of representations to mimic human perceptual sensitivity. We find that the early layers of VGG16, a deep neural network optimized for object recognition, provide a better match to human perception than later layers, and a better match than a 4-stage convolutional neural network (CNN) trained on a database of human ratings of distorted image quality. On the other hand, we find that simple models of early visual processing, incorporating one or more stages of local gain control, trained on the same database of distortion ratings, provide substantially better predictions of human sensitivity than either the CNN, or any combination of layers of VGG16.

18 citations


Posted Content
TL;DR: In this article, the authors used Fisher information to establish a model-derived prediction of sensitivity to local perturbations of an image, and computed the eigenvectors of the Fisher information matrix with largest and smallest eigenvalues, corresponding to the model-predicted most and leastnoticeable image distortions.
Abstract: We develop a method for comparing hierarchical image representations in terms of their ability to explain perceptual sensitivity in humans. Specifically, we utilize Fisher information to establish a model-derived prediction of sensitivity to local perturbations of an image. For a given image, we compute the eigenvectors of the Fisher information matrix with largest and smallest eigenvalues, corresponding to the model-predicted most- and least-noticeable image distortions, respectively. For human subjects, we then measure the amount of each distortion that can be reliably detected when added to the image. We use this method to test the ability of a variety of representations to mimic human perceptual sensitivity. We find that the early layers of VGG16, a deep neural network optimized for object recognition, provide a better match to human perception than later layers, and a better match than a 4-stage convolutional neural network (CNN) trained on a database of human ratings of distorted image quality. On the other hand, we find that simple models of early visual processing, incorporating one or more stages of local gain control, trained on the same database of distortion ratings, provide substantially better predictions of human sensitivity than either the CNN, or any combination of layers of VGG16.

11 citations




Posted ContentDOI
08 Aug 2017-bioRxiv
TL;DR: In this article, the authors measured fMRI responses to a novel set of stimuli, constructed as sinusoidal gratings in log-polar coordinates, which include circular, radial, and spiral geometries.
Abstract: Neurons in primate visual cortex (area V1) are tuned for spatial frequency, in a manner that depends on their position in the visual field. Several studies have examined this dependency using fMRI, reporting preferred spatial frequencies (tuning curve peaks) of V1 voxels as a function of eccentricity, but their results differ by as much as two octaves, presumably due to differences in stimuli, measurements, and analysis methodology. Here, we characterize spatial frequency tuning at a millimeter resolution within human primary visual cortex, across stimulus orientation and visual field locations. We measured fMRI responses to a novel set of stimuli, constructed as sinusoidal gratings in log-polar coordinates, which include circular, radial, and spiral geometries. For each individual stimulus, the local spatial frequency varies inversely with eccentricity, and for any given location in the visual field, the full set of stimuli span a broad range of spatial frequencies and orientations. Over the measured range of eccentricities, the preferred spatial frequency is well-fit by a function that varies as the inverse of the eccentricity plus a small constant. We also find small but systematic effects of local stimulus orientation, defined in both absolute coordinates and relative to visual field location. Specifically, peak spatial frequency is higher for tangential than radial orientations and for horizontal than vertical orientations.